#### Содержание:



#### ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ 1. Центральные кондиционеры КПКЦ 4 Опросный лист на проектирование и изготовление приточной, вытяжной 31 установки ОТОПИТЕЛЬНОЕ ОБОРУДОВАНИЕ 33 2. Калориферы КСК 36 3. Воздухонагреватели КП... 39 4. Теплообменники базовые ТБЗ 5. Воздухонагреватели ВНВ (ВНП) 41 6. Электрокалориферы ЭКО (аналог СФО) 45 7. Воздухонагреватели электрические ВНЭ 47 50 8. Агрегаты воздушно-отопительные АО 53 9. Агрегаты воздушно-отопительные АО2-50 54 10. Агрегаты воздушно-отопительные СТД-300\_\_\_ 55 11. Воздухонагревательные установки ВНУ 12. Воздухонагревательные установки ВТУ 57 13. Установки воздухонагревательные электрические УВНЭ 58 14. Установки электрокалориферные ЭКОЦ (аналог СФОЦ) 60 15. Установки электрокалориферные ЭКУ... 62 16. Аппарат воздушного охлаждения АВО... 63 КОТЕЛЬНОЕ ОБОРУДОВАНИЕ 16. Котлы твердотопливные длительного 64 горения КВр 17. Котёл «Медведь» на твёрдом топливе 66 серия Comfort 18. Промышленные твёрдотопливные 69 котлы Comfort

19. Пеллетные котлы Медведь Comfort

20. Водоподготовительные установки ВПУ



#### ТЕПЛООБМЕННОЕ ОБОРУДОВАНИЕ

| Общие сведения                                                       | 74  |
|----------------------------------------------------------------------|-----|
| 21. Подогреватели кожухотрубные (водо-водяные) ПВВ                   | 75  |
| 22. Комплектующие для подогревателей водо-водяных (калачи, переходы) | 78  |
| 23. Подогреватели кожухотрубные (паровые) ПП                         | 80  |
| 24. Подогреватели сетевой воды ПСВ                                   | 84  |
| 25. Водоподогреватели емкостные СТД                                  | 87  |
| 26. Подогреватели мазута типа ПМ                                     | 89  |
| 27. Подогреватели пароводяные МВН                                    | 91  |
| 28. Теплообменники пластинчатые                                      |     |
| Общие сведения                                                       | 93  |
| 29. Теплообменники пластинчатые разборные<br>TPx-GC (GL)             | 97  |
| 30. Теплообменники пластинчатые разборные<br>TPx-GX                  | 103 |
|                                                                      |     |



#### ЭНЕРГОСБЕРЕГАЮЩЕЕ ОБОРУДОВАНИЕ

| oner rooder er momee obor a mobiline |     |
|--------------------------------------|-----|
| Общие сведения                       | 107 |
| 31. Термомайзер Р-2.Т                | 108 |
| 32. Термомайзер Р-7.Т                | 112 |
| 33. Термомайзер Р-8.Т                | 116 |
| 34. Устройство управления ТЕПЛУР 4М  | 119 |
| Расчет эффективности использования   |     |
| термомайзеров в производственных     |     |
| и административных зданиях           | 121 |



#### **АВТОМАТИКА**

| 35. | Шкаф управления агрегатами воздушно-<br>отопительными A0       | 122 |
|-----|----------------------------------------------------------------|-----|
| 36. | Блок управления воздухонагревательными<br>установками типа ВНУ | 123 |
| 37. | Шкаф управления установками типа УВНЭ                          | 124 |
| 38. | Блок управления электрокалориферными<br>установками типа ЭКОП  | 126 |

71 73



## 1 ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ КПКЦ

КПКЦ-1,6 КПКЦ-20 КПКЦ-3,15 КПКЦ-25 КПКЦ - 5 КПКЦ -31,5 КПКЦ - 40 КПКЦ-6,3 КПКЦ - 8 КПКЦ - 50 КПКЦ-10 КПКЦ - 63 КПКЦ-12,5 КПКЦ - 80 КПКЦ-16 КПКЦ-100



- для установки внутри здания (венткамера);
- для установки снаружи здания ("наружное");
- "северное" исполнение установок (С1, С2, С3).

При установке центрального кондиционера внутри здания панели корпуса изготавливают из оцинкованной стали. При установке снаружи здания предусмотрен дополнительный навес сверху.

При монтаже установка должна находиться на высоте среднестатистического уровня снегового покрова для данной местности. Необходим специальный теплоизолированный фундамент. Соединительные электрические кабели размещаются на дне установки. При наружной установке трубопроводы тепло-холодоснабжения и системы утилизации теплоты с промежуточным теплоносителем могут размещаться внутри установки, заборное и выпускное отверстия должны быть защищены специальными сетками от птиц.

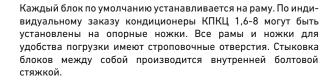


Центральные кондиционеры компонуются из отдельных конструктивных и функциональных блоков, которые служат для реализации процессов обработки, смешения потоков, изменения расхода, перемещения воздуха. Для доведения состояния наружного воздуха до состояния приточного воздуха в зависимости от периода года, его необходимо очистить от пыли, нагреть или охладить, увлажнить или осушить, при необходимости смешать в определенном соотношении с рециркуляционным воздухом, распределить по двум или нескольким потокам, обеспечить перемещение по сети воздуховодов. Согласно технологической схеме обработки воздуха, центральный кондиционер комплектуется функциональными технологическими блоками (воздушные клапаны, фильтры, воздухонагреватели, воздухоохладители, теплообменники для регенерации теплоты удаляемого воздуха, блоки увлажнения, блоки тепломассообмена, вентиляционные агрегаты, шумоглушители) и конструктивными блоками с определенной последовательностью их установки.








Конструктивно функциональные блоки выполнены в виде каркасно-панельной конструкции. Каркас собирается из алюминиевого профиля, соединенного между собой трехходовыми нейлоновыми или алюминиевыми уголками. Снаружи блок обшивается теплошумоизолирующими панелями, которые выполнены из оцинкованных листов. Внутри панели прокладывается базальтовое волокно или минеральная вата высокой плотности, обладающие хорошими шумопоглощающими свойствами и низкой теплопроводностью. Установка панелей, а также соединение блоков осуществляется через специальный уплотнитель, что обеспечивает КПКЦ достаточную герметизацию внутреннего объема.

В панелях функциональных блоков установлены дверцы для обслуживания. Они оснащаются петлями и ручками. Запорный механизм ручек позволяет достаточно плотно прижимать дверцу к раме. Дверцы могут быть оборудованы смотровыми окошками.





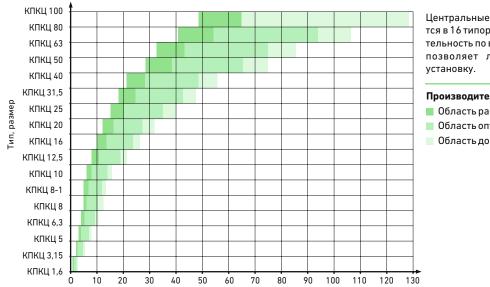











#### Функции блоков КПКЦ:

- в приемном блоке прием и смешение наружного воздуха с рециркуляционным, предподогрев воздуха;
- в смесительном и распределительном блоках смешение или распределение потоков воздуха;
- в блоке фильтров, который часто объединяется с приемным блоком грубая очистка воздуха от пыли в ячейковых фильтрах класса G3-G4, обычная очистка в карманных фильтрах классов от G4 до F9, иногда тонкая очистка в специальных фильтрах класса H13;
- в блоке водяного, парового или электрического воздухонагревателя - нагревание воздуха в поверхностных теплообменниках;
- в вентиляторном блоке вентиляционный агрегат, обеспечивающий перемещение воздуха в системе его кондиционирования.

- в блоке воздухоохладителя водяного или непосредственного испарения «сухое» или «мокрое» охлаждение в поверхностных теплообменниках:
- в блоке теплоутилизации нагревание наружного воздуха за счет теплоты удаляемого;
- в блоке увлажнения (камера орошения и сотовый увлажнитель) адиабатное увлажнение воздуха;
- в блоке парового увлажнения с парогенератором увлажнение воздуха паром;
- в блоке шумоглушения снижение уровня звуковой мощности, создаваемой оборудованием центрального кондиционера.



### Диапазоны производительности по воздуху



Центральные кондиционеры КПКЦ выпускаются в 16 типоразмерах, обеспечивая производительность по воздуху от 1600 до 100000 м³/ч, что позволяет легко подобрать необходимую установку.

#### Производительность по воздуху, м<sup>3</sup>/ч X 1000


- Область работы при ограниченных скоростях
- Область оптимальной работы
- Область допустимой работы





### Применение

Блоки приемные смесительные (два потока) служат для приема, регулирования расхода наружного и рециркуляционного воздуха, смешивания в определенном соотношении и равномерного распределения смеси по живому сечению центрального кондиционера. Приемный блок имеет воздушные клапаны для приема наружного и рециркуляционного воздуха. Клапанами управляют вручную или с помощью электрического привода для регулирования соотношения количества наружного и рециркуляционного воздуха. В смесительном блоке два воздушных клапана, которые устанавливаются один по фронту, другой — сверху или снизу. Рециркуляционный клапан, как правило, не требует утепления и теплоизоляции, так как не имеет контакта с наружным воздухом. Воздушные клапаны имеют фланцы для присоединения воздуховодов, могут поставляться с гибкими вставками. Клапан состоит из корпуса, фланцев крепления, лопаток, резиновых уплотнений, приводных шестеренок.





#### Описание

Приемные блоки могут быть прямоточные и смесительные. Блоки прямоточные служат для приема, регулирования расхода и равномерного распределения по живому сечению наружного воздуха, который поступает в кондиционер. В прямоточном блоке воздушные клапаны могут устанавливаться по фронту, сверху или снизу.



#### 🥸) Конструкция

Корпус клапана и лопатки изготавливаются из специального алюминиевого профиля. При расчетной температуре наружного воздуха ниже -30°C рекомендуется использовать электрообогреваемые лопатки клапана для предотвращения обледенения их во время остановок в работе. Резиновое уплотнение изготавливается из резины, устойчивой к низким температурам наружного воздуха.

Для управления клапаном на него может быть установлен ручной привод или электрический, работающие в пропорциональном или двухпозиционном режиме регулирования. Для закрытия лопаток клапана при аварийном отключении электроэнергии рекомендуется устанавливать электропривод с возвратной пружиной.

Клапан устанавливается снаружи или изнутри блока и крепится к воздуховоду через гибкую вставку.

#### Габаритные и присоединительные размеры

#### Передняя панель с клапаном.

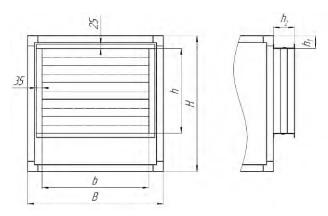



Рис. 1. Габаритные и присоединительные размеры. Передняя панель с клапаном.

Таб. 1. Габаритные и присоединительные размеры. Передняя панель с клапаном.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| b             | 570 | 570  | 870  | 1170 | 1470 | 870  | 1130 | 1130 | 1430 | 1730 | 1707 | 1730 | 2030 | 2090 | 2390 | 2990 | 3590 |
| h             | 210 | 510  | 510  | 510  | 510  | 810  | 810  | 1110 | 1110 | 1110 | 1410 | 1710 | 1710 | 2110 | 2110 | 2110 | 2110 |
| h1            | 55  | 55   | 55   | 55   | 55   | 55   | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 95   | 95   | 95   | 95   |
| Масса,<br>кг  | 7   | 15   | 20   | 25   | 25   | 23   | 35   | 45   | 50   | 60   | 70   | 80   | 100  | 145  | 175  | 205  | 255  |

#### Блок с вертикальным клапаном.

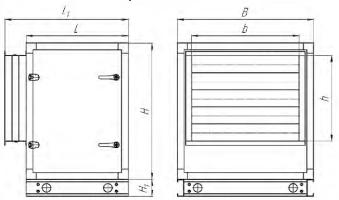



Рис. 2. Габаритные и присоединительные размеры. Блок с вертикальным клапаном.

Таб. 2. Габаритные и присоединительные размеры. Блок с вертикальным клапаном.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| b             | 570 | 570  | 870  | 1170 | 1430 | 830  | 1130 | 1130 | 1430 | 1730 | 1730 | 1730 | 2030 | 2090 | 2390 | 2990 | 3590 |
| L             | 450 | 450  | 450  | 450  | 450  | 600  | 640  | 790  | 790  | 790  | 765  | 865  | 865  | 1105 | 1105 | 1105 | 1105 |
| h             | 210 | 510  | 510  | 510  | 510  | 810  | 810  | 1110 | 1110 | 1110 | 1410 | 1710 | 1710 | 2110 | 2110 | 2110 | 2110 |
| L1            | 550 | 550  | 550  | 550  | 550  | 700  | 740  | 890  | 890  | 890  | 865  | 965  | 965  | 1205 | 1205 | 1205 | 1205 |
| Масса, кг     | 18  | 45   | 50   | 60   | 75   | 72   | 90   | 115  | 130  | 150  | 170  | 320  | 370  | 420  | 525  | 580  | 680  |

#### Блок с горизонтальным клапаном.

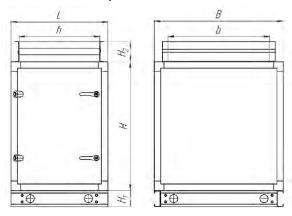



Рис. 3. Габаритные и присоединительные размеры. Блок с вертикальным клапаном.

Таб. 3. Габаритные и присоединительные размеры. Блок с вертикальным клапаном.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 | 16   | 20   | 25   |      |      | 50   | 63   | 80   |      |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| H2            | 100 | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
| b             | 570 | 570  | 870  | 1170 | 1430 | 830  | 1130 | 1130 | 1430 | 1730 | 1730 | 1730 | 2030 | 2090 | 2390 | 2990 | 3590 |
| L             | 450 | 450  | 450  | 450  | 450  | 600  | 640  | 790  | 790  | 790  | 765  | 865  | 865  | 1105 | 1105 | 1105 | 1105 |
| h             | 310 | 310  | 310  | 310  | 310  | 410  | 410  | 610  | 610  | 610  | 610  | 710  | 710  | 910  | 910  | 910  | 910  |
| Масса, кг     | 18  | 45   | 50   | 60   | 75   | 72   | 90   | 115  | 130  | 150  | 170  | 320  | 370  | 420  | 525  | 580  | 680  |



#### Блок смесительный.

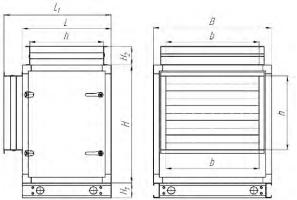



Рис. 4. Габаритные и присоединительные размеры. Блок смесительный.

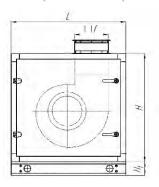
Таб. 4. Габаритные и присоединительные размеры. Блок смесительный.

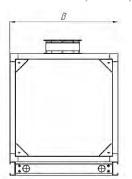
| Размер,<br>мм | 1,6 |     | 5    | 6,3  | 8-1  | 8    | 10   |      | 16   | 20   | 25   |      | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700 | 700 | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800 | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| H1            | 100 | 100 | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| H2            | 100 | 100 | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
| L             | 450 | 450 | 450  | 450  | 450  | 600  | 640  | 790  | 790  | 790  | 765  | 865  | 865  | 1105 | 1105 | 1105 | 1105 |
| L1            | 590 | 590 | 590  | 590  | 590  | 740  | 365  | 365  | 365  | 365  | 975  | 1075 | 1075 | 1285 | 1285 | 1285 | 1285 |
| b             | 570 | 570 | 870  | 1170 | 1430 | 830  | 1130 | 1130 | 1430 | 1730 | 1730 | 1730 | 2030 | 2090 | 2390 | 2990 | 3590 |
| h             | 310 | 310 | 310  | 310  | 310  | 410  | 410  | 610  | 610  | 610  | 610  | 710  | 710  | 910  | 910  | 910  | 910  |
| Масса, кг     | 21  | 50  | 55   | 65   | 85   | 82   | 90   | 125  | 145  | 170  | 190  | 320  | 370  | 420  | 525  | 580  | 680  |

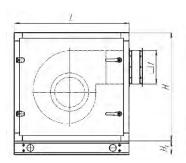


## 1.2 БЛОК ВЕНТИЛЯТОРА

## **Назначение**


Вентиляторный блок служит для перемещения воздуха в кондиционере через технологические и конструктивные блоки и от вентиляционного центра к помещениям по воздуховодам. В вентиляторных блоках используются вентиляторы радиальные двухстороннего всасывания с клино-ременной передачей. Рабочее колесо вентилятора может быть с вперед или назад загнутыми лопатками и имеет статическую и динамическую балансировку.


### 🥸 Конструкция


Для привода вентиляторов применяются трехфазные электродвигатели с напряжением 380 В. Передача крутящего момента от электродвигателя к рабочему колесу вентилятора осуществляется посредством клиноременной передачи. На выхлопном патрубке вентилятора установлена гибкая вставка, соединенная с корпусом, за тем, чтобы вибрация не передавалась на корпус. С этой же целью вентилятор с электродвигателем на общей раме размещены на виброизолирующем основании.

Для контроля исправности вентиляционной установки секция оснащается смотровым лючком. Со стороны обслуживания секция оборудована съемной панелью или дверью. Панель со стороны выхлопа вентилятора имеет гибкую вставку и служит для подсоединения КПКЦ к системе воздуховодов.

#### Габаритные и присоединительные размеры







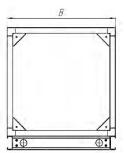



Рис. 5. Габаритные размеры. Блок вентилятора.

Таб. 5. Габаритные размеры. Блок вентилятора.

| Размер,<br>мм                | 1,6      | 3,15           | 5        | 6,3      | 8-1      | 8               | 10       | 12,5    | 16      | 20      | 25             | 31,5                 | 40               | 50   | 63       | 80        | 100       |
|------------------------------|----------|----------------|----------|----------|----------|-----------------|----------|---------|---------|---------|----------------|----------------------|------------------|------|----------|-----------|-----------|
| № центроб.<br>вентилятора    | 1,4/1,6  | 1,8/2,5        | 2,8/3,15 | 2,8/3,15 | 2,8/3,15 | 2,8/4,0         | 3,15/4,0 | 4,0/5,0 | 4,5/5,6 | 5,0/6,3 | 6,3/7,1        | 7,1                  | 8,0/9,0          | 9,0  | 9,0/10,0 | 10,0/11,2 | 10,0/12,5 |
| № вент.свобод.<br>колесо ВСК | 2,5/3,15 | 3,55/4/<br>4,5 | 4,5/5,6  | 4,5/5,6  | 4,5/5,6  | 4,5/5,6/<br>6,3 | 6,3      | 7,1/8   | 7,1/8   | 8/9     | 8/9/10<br>11,2 | 8/9/10/<br>11,2/12,5 | 10/11,2/<br>12,5 | -    | -        | -         | -         |
| В                            | 700      | 700            | 1300     | 1300     | 1600     | 1000            | 1300     | 1300    | 1600    | 1900    | 1900           | 1900                 | 2200             | 2300 | 2600     | 3200      | 3800      |
| Н                            | 450      | 800            | 800      | 800      | 800      | 1090            | 1090     | 1400    | 1400    | 1400    | 1700           | 2000                 | 2000             | 2600 | 2600     | 2600      | 2600      |
| H1                           | 100      | 100            | 100      | 100      | 100      | 100             | 150      | 150     | 150     | 150     | 150            | 150                  | 150              | 200  | 200      | 200       | 200       |
| Lцентр                       | 800      | 1000           | 1250     | 1250     | 1250     | 1500            | 1550     | 1750    | 2000    | 2050    | 2250           | 2250                 | 2450             | 2850 | 2850     | 3500      | 3500      |
| Lвск                         | 750      | 850            | 900      | 900      | 900      | 1000            | 1200     | 1200    | 1500    | 1500    | 1600           | 1800                 | 1800             | -    | -        | -         | -         |
| Масса, кг                    | 35       | 65             | 165      | 165      | 195      | 190             | 225      | 275     | 385     | 430     | 540            | 1030                 | 1250             | 1450 | 1500     | 1600      | 2200      |







#### Описание

Внутри блоков устанавливаются воздушные фильтры, которые очищают наружный и рециркуляционный воздух от пыли.

В составе центральных кондиционеров поставляют несколько видов фильтрующих блоков:

- с ячейковыми фильтрами;
- с карманными фильтрами;
- с фильтрами тонкой очистки воздуха;
- с фильтрами из активированного угля.



#### Описание

В карманных фильтрах площадь фильтровального материала, через которую проходит очищаемый воздух, в несколько раз больше площади фронтального сечения кондиционера, что позволяет уменьшить аэродинамическое сопротивление фильтра, увеличить время работы фильтра между регенерацией, увеличить срок службы фильтра.

Карманные фильтры также монтируются в рамы, которые устанавливаются на направляющих рельсах. Рамы могут быть извлечены со стороны боковой панели для обслуживания. Карманные фильтры класса G4 применяются в качестве первой ступени очистки, классов F5 - F9 - второй ступени очистки. Фильтр подлежит замене, когда падение давления на фильтре возрастет в два раза по сравнению с начальным падением давления, для G3-140 Па, F5-F6 - 240 Па, F7-F9 - 350 Па.



## **Назначение**

Ячейковые фильтры применяются для грубой очистки воздуха в качестве первой ступени. Данные фильтры используются с четырьмя видами фильтрующего материала:

- из стекловолокна класса G3 с эффективностью очистки 80% согласно EN 779:
- винипластовые сетки класса G3 с эффективностью очистки 60% согласно EN 779;
- металлические гофрированные сетки класса G2 с эффективностью очистки 60% согласно EN 779;
- гофрированный полиэстер класса G3, G4 с  $\,$  эффективностью очистки до  $\,$  90% согласно EN 779.

Ячейковые фильтры монтируются в рамы, которые устанавливаются на направляющих рельсах. Рамы могут быть извлечены со стороны боковой панели для обслуживания.



Карманные фильтры изготавливают согласно EN 779:

- грубой очистки с полотнами из полиэстера класса G3, G4 с эффективностью очистки до 95%:
- тонкой очистки с полотнами из мельтблоуна класса F5 с эффективностью очистки до 60%;
- тонкой очистки с полотнами из полиэстера класса F5- F9 с эффективностью очистки до 99%.

Стандартная глубина карманных фильтров составляет 600 мм, укороченных - 360 мм.

#### Блок ячейкового фильтра

Таб. 6. Технические характеристики. Блок ячейкового фильтра.

| Показатель                                             | ФВП-I/G3                   | ФВП-МетII/G2        | ФВКас-III/G3            |
|--------------------------------------------------------|----------------------------|---------------------|-------------------------|
| Начальное аэродинамическое сопростивление, Па (кгс/м²) | 40                         | 30                  | 22                      |
| Конечное аэродинамическое сопростивление, Па (кгс/м²)  | 130                        | 250                 | 250                     |
| Средняя эффективность очистки по весу, %               | 90-95                      | 60-65               | 80                      |
| Фильтрующий материал                                   | стекловолокнистый материал | металлические сетки | гофрированный полиэстер |
| Марка фильтра                                          | ФВП-I-XX-48-G3             | ФВП-Мет-II-XX-48-G2 | ФВП-Мет-III-XX-48-G3    |

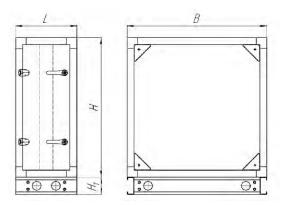



Рис. 6. Габаритные и присоединительные размеры. Блок ячейкового фильтра.

Таб. 7. Габаритные и присоединительные размеры. Блок ячейкового фильтра.

| Размер,<br>мм                       | 1,6 | 3,15 | 5    | 6,3  | 8-1  |      | 10     | 12,5    |           | 20      | 25        | 31,5 | 40   | 50   | 63   |      | 100  |
|-------------------------------------|-----|------|------|------|------|------|--------|---------|-----------|---------|-----------|------|------|------|------|------|------|
| В                                   | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300   | 1300    | 1600      | 1900    | 1900      | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н                                   | 450 | 800  | 800  | 800  | 800  | 1090 | 1090   | 1400    | 1400      | 1400    | 1700      | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| L                                   | 450 | 450  | 450  | 450  | 450  | 600  | 640    | 790     | 790       | 790     | 765       | 865  | 865  | 1105 | 1105 | 1105 | 1105 |
| H1                                  | 100 | 100  | 100  | 100  | 100  | 100  | 150    | 150     | 150       | 150     | 150       | 150  | 150  | 200  | 200  | 200  | 200  |
| Тип фильтра/<br>Класс<br>фильтрации |     |      |      |      |      |      | ФВП-І/ | G3; ФВГ | l-Meт-II/ | G2; ФВК | ac-III/G3 |      |      |      |      |      |      |
| Масса, кг                           | 8   | 27   | 34   | 41   | 45   | 43   | 54     | 66      | 75        | 83      | 105       | 120  | 138  | 155  | 175  | 203  | 231  |

#### Блок карманного фильтра

Таб. 8. Технические характеристики. Блок карманного фильтра.

|             | 140.0.100101   | ческие характеристики | . Влок карманного фил | Dipa. | l              |
|-------------|----------------|-----------------------|-----------------------|-------|----------------|
| Кондиционер | Марка фильтра  | Класс очистки фильтра | Количество, шт        |       | Марка фильтра  |
| КПКЦ 1,6    | ФВК-36-360-3-G |                       | 1                     | 1,1   | ФВК-36-600-3-G |
| КПКЦ 3,15   | ФВК-66-360-6-G |                       | 1                     | 2,2   | ФВК-66-600-6-G |
| =           | ФВК-36-360-3-G |                       | 1                     | 1,1   | ФВК-36-600-3-G |
| КПКЦ 5      | ФВК-66-360-6-G |                       | 1                     | 2,2   | ФВК-66-600-6-G |
| КПКЦ 6,3    | ФВК-66-360-6-G |                       | 2                     | 4,4   | ФВК-66-600-6-G |
| KEKILO 1    | ФВК-36-360-3-G |                       | 1                     | 1,1   | ФВК-36-600-3-G |
| КПКЦ 8-1    | ФВК-66-360-6-G |                       | 2                     | 4,4   | ФВК-66-600-6-G |
|             | ФВК-36-360-3-G |                       | 1                     | 1,1   | ФВК-36-600-3-G |
| КПКЦ 8      | ФВК-36-360-3-G |                       | 2                     | 2,2   | ФВК-36-600-3-G |
|             | ФВК-66-360-6-G |                       | 1                     | 2,2   | ФВК-66-600-6-G |
| КПКЦ 10     | ФВК-36-360-3-G |                       | 2                     | 2,2   | ФВК-36-600-3-G |
| rana ro     | ФВК-66-360-6-G | G4                    | 2                     | 4,4   | ФВК-66-600-6-G |
| КПКЦ 12,5   | ФВК-66-360-6-G | F5                    | 4                     | 8,8   | ФВК-66-600-6-G |
| КПКЦ 16     | ФВК-36-360-3-G | F6                    | 2                     | 2,2   | ФВК-36-600-3-G |
|             | ФВК-66-360-6-G | F0                    | 4                     | 8,8   | ФВК-66-600-6-G |
| КПКЦ 20     | ФВК-66-360-6-G |                       | 6                     | 13,2  | ФВК-66-600-6-G |
| КПКЦ 25     | ФВК-36-360-3-G |                       | 3                     | 3,2   | ФВК-36-600-3-G |
| King 20     | ФВК-66-360-6-G |                       | 6                     | 13,2  | ФВК-66-600-6-G |
| КПКЦ 31,5   | ФВК-66-360-6-G |                       | 9                     | 19,8  | ФВК-66-600-6-G |
| КПКЦ 40     | ФВК-36-360-3-G |                       | 3                     | 3,3   | ФВК-36-600-3-G |
|             | ФВК-66-360-6-G |                       | 9                     | 19,8  | ФВК-66-600-6-G |
| КПКЦ 50     | ФВК-36-360-3-G |                       | 4                     | 4,4   | ФВК-36-600-3-G |
| rana oo     | ФВК-66-360-6-G |                       | 12                    | 26,4  | ФВК-66-600-6-G |
| КПКЦ 63     | ФВК-66-360-6-G |                       | 16                    | 35,2  | ФВК-66-600-6-G |
| кпкц 80     | ФВК-66-360-6-G |                       | 20                    | 44    | ФВК-66-600-6-G |
| КПКЦ 100    | ФВК-66-360-6-G |                       | 24                    | 52,8  | ФВК-66-600-6-G |



Таб. 9. Технические характеристики. Блок карманного фильтра.

| Показатель                                                     |     |      |      |      |      |     |
|----------------------------------------------------------------|-----|------|------|------|------|-----|
| HURASATEJIB                                                    | G4  | F5   | F6   |      | F8   | F9  |
| Начальное аэродинамическое сопростивление, Па $(кгc/m^2)$      | 32  | 103  | 104  | 140  | 155  | 212 |
| Конечное аэродинамическое сопростивление, Па $(\kappa rc/m^2)$ | 250 | 450  | 450  | 450  | 450  | 450 |
| Средняя эффективность очистки по весу, %                       | >90 | 4045 | 6065 | 8085 | 9095 | >95 |

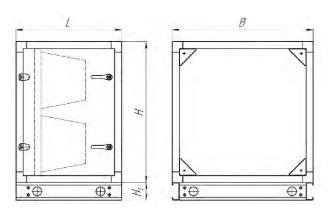



Рис. 7. Габаритные размеры. Блок карманного фильтра.

Таб. 10. Габаритные размеры. Блок карманного фильтра.

| Размер,<br>мм                       |     | 3,15 | 5    | 6,3  | 8-1  |      | 10   | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63   | 80   |      |
|-------------------------------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В                                   | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н                                   | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| L                                   | 550 | 550  | 550  | 550  | 550  | 550  | 590  | 590  | 590  | 590  | 590  | 590  | 590  | 1105 | 1105 | 1105 | 1105 |
| H1                                  | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| Тип фильтра/<br>Класс<br>фильтрации |     |      |      |      |      |      |      |      | G4F9 |      |      |      |      |      |      |      |      |
| Масса, кг                           | 25  | 70   | 82   | 85   | 95   | 90   | 106  | 125  | 150  | 165  | 180  | 280  | 340  | 380  | 400  | 450  | 520  |
|                                     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |



## 1.4 БЛОК ВОЗДУХОНАГРЕВАТЕЛЯ ВОДЯНОГО ИЛИ ПАРОВОГО



Подвод пара осуществляется к верхнему патрубку, а слив конденсата через конденсатоотводчик в нижнем патрубке. Необходимо обеспечить постоянный отвод конденсата. При плохом его отводе возможно затопление теплообменника и замерзание его в условиях низких температур наружного воздуха. С целью лучшего отвода конденсата необходимо установить автоматический конденсатоотводчик на конденсатопроводе после парового воздухонагревателя. Воздухонагреватель устанавливается вертикально на специальных направляющих, позволяющих выдвигать его для осмотра, очистки и ремонта. Патрубки имеют сливные и воздуховыпускные пробки в виде крана Маевского. Присоединение теплообменников к сети теплоснабжения возможно на резьбе, фланцах, сварке.

### **Назначение**

Для нагревания воздуха в центральных кондиционерах используются поверхностные теплообменники, общим конструктивным признаком которых является наличие разделительной стенки между воздухом и теплоносителем, наличие оребренных нагревательных элементов. В воздухонагревателях теплоносителем может быть вода, незамерзающие растворы этиленгликоля или пар с температурой 190°С и давлением 1,2 МПа.

Нагревательный элемент водяных и паровых воздухонагревателей - оребренная со стороны воздуха металлическая труба. Материал трубы и пластин оребрения может быть:

- Си-АІ (медная труба, алюминиевое оребрение);
- Fe-AL (стальная труба, алюминиевое оребрение).

В качестве теплоносителя применяется горячая вода или пар. Надежная эксплуатация воздухонагревателя зависит от его конструкции. Для исключения образования воздушных пробок, которые могут вызвать нарушение циркуляции теплоносителя и шум, а также облегчения удаления воздуха, направление движения воды должно быть снизу вверх. Поэтому входной патрубок, к которому подключается подающий трубопровод, расположен внизу, а выходной, к которому подключается обратный трубопровод - вверху.

#### Блок воздухонагревателя водяного

Таб. 11. Технические характеристики. Воздухонагреватель водяной биметаллический (стальная труба с алюминиевым оребрением).

| Кондиционер | Воздухонагреватель водяной | Размеры фронта | ального сечения        |
|-------------|----------------------------|----------------|------------------------|
| кондиционер | Боздухонагреватель водяной | Длина трубок   | Высота трубной решетки |
| КПКЦ 1,6    | BHB-1,6-Np-Mx              | 570            | 335                    |
| КПКЦ 3,15   | BHB-3,15-Np-Mx             | 570            | 685                    |
| КПКЦ 5      | BHB-5-Np-Mx                | 870            | 685                    |
| КПКЦ 6,3    | BHB-6,3-Np-Mx              | 1170           | 685                    |
| КПКЦ 8-1    | BHB-8-1-Np-Mx              | 1470           | 685                    |
| кпкц 8      | BHB-8-Np-Mx                | 870            | 975                    |
| КПКЦ 10     | BHB-10-Np-Mx               | 1170           | 935                    |
| КПКЦ 12,5   | BHB-12,5-Np-Mx             | 1170           | 1245                   |
| КПКЦ 16     | BHB-16-Np-Mx               | 1470           | 1245                   |
| КПКЦ 20     | BHB-20-Np-Mx               | 1770           | 1245                   |
| КПКЦ 25     | BHB-25-Np-Mx               | 1770           | 1545                   |
| КПКЦ 31,5   | BHB-31,5-Np-Mx             | 1770           | 1845                   |
| КПКЦ 40     | BHB-40-Np-Mx               | 2070           | 1845                   |
| КПКЦ 50     | BHB-50-Np-Mx               | 2170           | 2405                   |
| КПКЦ 63     | BHB-63-Np-Mx               | 2470           | 2405                   |
| КПКЦ 80     | BHB-80-Np-Mx               | 3070           | 2405                   |
| КПКЦ 100    | BHB-100-Np-Mx              | 3670           | 2405                   |

Примечание: Np - количество рядов (2,3,4)

Мх - количество ходов (2,4,6,8)



Таб. 12. Технические характеристики. Воздухонагреватель водяной биметаллический (медная труба с алюминиевым оребрением).

| Кондиционер | Dearway Property Porque    | Размеры фронта | эльного сечения        |
|-------------|----------------------------|----------------|------------------------|
|             | Воздухонагреватель водяной | Длина трубок   | Высота трубной решетки |
| КПКЦ 1,6    | DC-c-d-e-f-450-g-h         | 450            | 300                    |
| КПКЦ 3,15   | DC-c-d-e-f-450-g-h         | 450            | 600                    |
| КПКЦ 5      | DC-c-d-e-f-745-g-h         | 745            | 600                    |
| КПКЦ 6,3    | DC-c-d-e-f-1050-g-h        | 1050           | 600                    |
| КПКЦ 8-1    | DC-c-d-e-f-1330-g-h        | 1330           | 600                    |
| кпкц 8      | DC-c-d-e-f-745-g-h         | 745            | 900                    |
| КПКЦ 10     | DC-c-d-e-f-1050-g-h        | 1050           | 900                    |
| КПКЦ 12,5   | DC-c-d-e-f-1050-g-h        | 1050           | 1200                   |
| КПКЦ 16     | DC-c-d-e-f-1300-g-h        | 1300           | 1200                   |
| КПКЦ 20     | DC-c-d-e-f-1600-g-h        | 1600           | 1200                   |
| КПКЦ 25     | DC-c-d-e-f-1600-g-h        | 1600           | 1500                   |
| КПКЦ 31,5   | DC-c-d-e-f-1600-g-h        | 1600           | 1800                   |
| КПКЦ 40     | DC-c-d-e-f-1900-g-h        | 1900           | 1800                   |
| КПКЦ 50     | DC-c-d-e-f-1850-g-h        | 1850           | 2x1150                 |
| КПКЦ 63     | DC-c-d-e-f-2230-g-h        | 2230           | 2x1150                 |
| КПКЦ 80     | DC-c-d-e-f-2750-g-h        | 2750           | 2x1150                 |
| КПКЦ 100    | DC-c-d-e-f-1650-g-h        | 2x1630         | 2300                   |

**Примечание:** с - VL и VR (левое и правое исполнение)

d - H и M (геометрия пластин оребрения)

е - количество рядов отверстий в пластине оребрения

f - количество отверстий в ряду в пластине оребрения

g -шаг между листами оребрения

h - количество змеевиков в теплообменнике

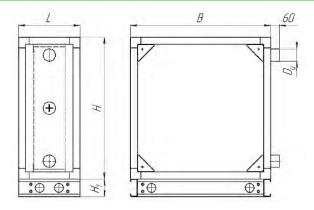



Рис. 8. Габаритные размеры. Блок воздухонагревателя водяного.

Таб. 13. Габаритные размеры. Блок воздухонагревателя водяного.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5   | 16       | 20      | 25   | 31,5 | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|------|------|------|------|------|------|--------|----------|---------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300   | 1600     | 1900    | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400   | 1400     | 1400    | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| L             | 320 | 320  | 320  | 320  | 320  | 320  | 360  | 360    | 360      | 360     | 360  | 360  | 360  | 400  | 400  | 400  | 400  |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150    | 150      | 150     | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| Dy            |     |      |      |      |      | •    |      | опреде | ляется : | заводом | •    | •    |      |      | •    | •    |      |
| Масса, кг     | 20  | 47   | 63   | 78   | 93   | 90   | 115  | 99     | 143      | 166     | 196  | 225  | 257  | 296  | 330  | 400  | 425  |

#### Блок воздухонагревателя парового

Таб. 14. Технические характеристики. Воздухонагреватель паровой биметаллический (стальная труба с алюминиевым оребрением).

| V           | D                          | Размеры фронта | эльного сечения        |
|-------------|----------------------------|----------------|------------------------|
| Кондиционер | Воздухонагреватель водяной | Длина трубок   | Высота трубной решетки |
| КПКЦ 1,6    | ВНП-1,6-Np-Мх              | 300            | 580                    |
| КПКЦ 3,15   | ВНП-3,15-Np-Мх             | 650            | 580                    |
| КПКЦ 5      | ВНП-5-Np-Мх                | 650            | 880                    |
| КПКЦ 6,3    | ВНП-6,3-Np-Мх              | 650            | 1180                   |
| КПКЦ 8-1    | ВНП-8-1-Np-Мх              | 650            | 1480                   |
| кпкц 8      | ВНП-8-Nр-Мх                | 940            | 880                    |
| КПКЦ 10     | ВНП-10-Nр-Мх               | 900            | 1180                   |
| КПКЦ 12,5   | ВНП-12,5-Np-Мх             | 1210           | 1180                   |
| КПКЦ 16     | ВНП-16-Np-Мх               | 1210           | 1480                   |
| КПКЦ 20     | ВНП-20-Np-Мх               | 1210           | 1780                   |
| КПКЦ 25     | ВНП-25-Np-Мх               | 1510           | 1780                   |
| КПКЦ 31,5   | ВНП-31,5-Np-Мх             | 1810           | 1780                   |
| КПКЦ 40     | ВНП-40-Nр-Мх               | 1810           | 2080                   |
| КПКЦ 50     | ВНП-50-Np-Мх               | 2370           | 2170                   |
| КПКЦ 63     | ВНП-63-Np-Мх               | 2370           | 2470                   |
| КПКЦ 80     | ВНП-80-Np-Мх               | 2370           | 3070                   |
| КПКЦ 100    | ВНП-100-Np-Мх              | 2370           | 3670                   |

Примечание: Np - количество рядов (2,3,4)

Мх - количество ходов (2,4,6,8)

Таб. 15. Технические характеристики. Воздухонагреватель паровой биметаллический (медная труба с алюминиевым оребрением).

| V           | D                          | Размеры фронта | эльного сечения        |
|-------------|----------------------------|----------------|------------------------|
| Кондиционер | Воздухонагреватель водяной | Длина трубок   | Высота трубной решетки |
| КПКЦ 1,6    | DC-c-d-e-f-450-g-h         | 450            | 300                    |
| КПКЦ 3,15   | DC-c-d-e-f-450-g-h         | 450            | 600                    |
| КПКЦ 5      | DC-c-d-e-f-745-g-h         | 745            | 600                    |
| КПКЦ 6,3    | DC-c-d-e-f-1050-g-h        | 1050           | 600                    |
| КПКЦ 8-1    | DC-c-d-e-f-1330-g-h        | 1330           | 600                    |
| кпкц 8      | DC-c-d-e-f-745-g-h         | 745            | 900                    |
| КПКЦ 10     | DC-c-d-e-f-1050-g-h        | 1050           | 900                    |
| КПКЦ 12,5   | DC-c-d-e-f-1050-g-h        | 1050           | 1200                   |
| КПКЦ 16     | DC-c-d-e-f-1300-g-h        | 1300           | 1200                   |
| КПКЦ 20     | DC-c-d-e-f-1600-g-h        | 1600           | 1200                   |
| КПКЦ 25     | DC-c-d-e-f-1600-g-h        | 1600           | 1500                   |
| КПКЦ 31,5   | DC-c-d-e-f-1600-g-h        | 1600           | 1800                   |
| КПКЦ 40     | DC-c-d-e-f-1900-g-h        | 1900           | 1800                   |
| КПКЦ 50     | DC-c-d-e-f-1850-g-h        | 1850           | 2x1150                 |
| КПКЦ 63     | DC-c-d-e-f-2230-g-h        | 2230           | 2x1150                 |
| КПКЦ 80     | DC-c-d-e-f-2750-g-h        | 2750           | 2x1150                 |
| КПКЦ 100    | DC-c-d-e-f-1650-g-h        | 2x1630         | 2300                   |

**Примечание:** с - VL и VR (левое и правое исполнение)

d - H и M (геометрия пластин оребрения)

е - количество рядов отверстий в пластине оребрения

f - количество отверстий в ряду в пластине оребрения

g -шаг между листами оребрения

h - количество змеевиков в теплообменнике



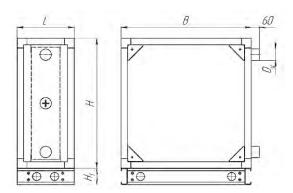



Рис. 9. Габаритные размеры. Блок воздухонагревателя парового.

Таб. 16. Габаритные размеры. Блок воздухонагревателя парового.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  |      | 10   | 12,5   |         | 20      | 25   |      | 40   |      | 63   | 80   | 100  |
|---------------|-----|------|------|------|------|------|------|--------|---------|---------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300   | 1600    | 1900    | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400   | 1400    | 1400    | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| L             | 320 | 320  | 320  | 320  | 320  | 320  | 360  | 360    | 360     | 360     | 360  | 360  | 360  | 400  | 400  | 400  | 400  |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150    | 150     | 150     | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| Dy            |     |      |      |      |      |      |      | опреде | еляется | заводом |      |      |      |      |      |      |      |
| Масса, кг     | 34  | 47   | 63   | 78   | 93   | 90   | 115  | 99     | 143     | 166     | 196  | 225  | 257  | 296  | 330  | 400  | 425  |



## 1.5 БЛОК ВОЗДУХОНАГРЕВАТЕЛЯ ЭЛЕКТРИЧЕСКОГО

**Описание** 

Электрические воздухонагреватели имеют теплообменную поверхность, состоящую из пучка трубчатых электронагревательных элементов, расположенных друг относительно друга так же, как и оребренные трубки, обогреваемые водой или паром, в шахматном или коридорном порядке.

Трубчатый нагревательный элемент представляет собой обычно стальную трубку, внутри которой находится наполнитель с запрессованной в него спиралью из высоколегированной (хром-никель) стали. Наполнителем ТЭНа служит порошок плавленой окиси магния (периклаз).

Для увеличения площади поверхности теплообмена со стороны воздуха нагревательные элементы оснащены спиральнонакатным алюминиевым оребрением. Контактные стержни нагревателей соединяются между собой перемычками. Ряды ТЭНов, поперечные по ходу воздуха, соединены между собой так, что образуют самостоятельные регулируемые секции. В таких воздухонагревателях возможно ступенчатое регулирование мощности. Электрический нагреватель имеет термостат безопасности для ограничения максимальной температуры воздуха между элементами 90°С. Корпус электрического воздухонагревателя должен быть заземлен, для чего предусмотрена специальная клемма. Сопротивление изоляции должно быть не менее 0,5 Ом.

Таб. 17. Технические характеристики. Блок воздухонагревателя электрического.

| Размер,<br>мм                              | 1,6   | 3,15 | 5    | 6,3  | 8-1   | 8     | 10   | 12,5  | 16    | 20   | 25    | 31,5  | 40    | 50    | 63               | 80 | 100  |
|--------------------------------------------|-------|------|------|------|-------|-------|------|-------|-------|------|-------|-------|-------|-------|------------------|----|------|
| Кол-во секций                              |       |      |      |      |       |       |      |       | 3     |      |       |       |       |       |                  |    |      |
| Напряжение, В                              |       |      |      |      |       |       |      |       | 220   |      |       |       |       |       |                  |    |      |
| Мощность одного ТЭНа, кВт                  | 0,75  | 0,75 | 1,28 | 1,8  | 2,31  | 1,28  | 1,8  | 1,8   | 2,31  | 2,85 | 2,85  | 2,85  | 2,85  |       |                  |    |      |
| Мощность однорядных<br>эл.калориферов, кВт | 6,75  | 13,5 | 23   | 32,4 | 41,6  | 38,4  | 43,2 | 59,4  | 76,2  | 94   | 119,7 | 146,4 | 222,3 |       |                  |    |      |
| Мощность двухрядных<br>эл.калориферов, кВт | 13,5  | 27   | 46   | 64,8 | 83,2  | 76,8  | 97,2 | 118,8 | 152,4 | 188  | 239,4 | 290,7 | 222,3 | опред | еляется<br>данні |    | ными |
| Мощность трёхрядных<br>эл.калориферов, кВт | 20,25 | 40,5 | 69   | 97,5 | 124,8 | 103,7 | 135  | 178,2 | 244,5 | 282  | 359   | 439   | 222,3 |       |                  |    |      |

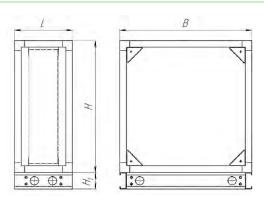



Рис. 10. Габаритные размеры. Блок воздухонагревателя электрического.

Таб. 18. Габаритные размеры. Блок воздухонагревателя электрического.

| Размер,<br>мм | 1,6  | 3,15 | 5    | 6,3  | 8-1   | 8     | 10    | 12,5  | 16    | 20    | 25    | 31,5  | 40    | 50    | 63   | 80   | 100   |
|---------------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|
| В             | 700  | 700  | 1000 | 1300 | 1600  | 1000  | 1300  | 1300  | 1600  | 1900  | 1900  | 1900  | 2200  | 2300  | 2600 | 3200 | 3800  |
| Н             | 450  | 800  | 800  | 800  | 800   | 1090  | 1090  | 1400  | 1400  | 1400  | 1700  | 2000  | 2000  | 2600  | 2600 | 2600 | 2600  |
| L             | 380  | 380  | 380  | 380  | 380   | 380   | 420   | 420   | 420   | 420   | 420   | 420   | 420   | 460   | 460  | 460  | 460   |
| H1            | 100  | 100  | 100  | 100  | 100   | 100   | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 200   | 200  | 200  | 200   |
| Масса, кг     | 24,2 | 51,1 | 66,3 | 85,5 | 102,3 | 102,3 | 126,5 | 108,9 | 157,3 | 182,6 | 215,6 | 247,5 | 282,7 | 325,6 | 363  | 400  | 467,5 |







### **Назначение**

Блок предназначен для охлаждения (осушения) воздуха. В качестве воздухоохладителя, как и в случае воздухонагревателя, используется теплообменник двухтипов: медный или стальной. В качестве охладителя может использоваться холодная вода или этиленгликолевая смесь. Так как при охлаждении воздуха выделяется большое количество влаги, то стандартно воздухоохладители оснащаются каплеуловителями, которые изготовлены из полипропиленового профиля. Под теплообменником и каплеуловителем устанавливается поддон для сбора конденсата. В линии отвода конденсата должен быть организован сифон с достаточной высотой водяного затвора.

Таб. 19. Технические характеристики. Блок воздухоохладителя жидкостного (стальная труба с алюминиевым оребрением).

| 16        |                            | Размеры фронта | эльного сечения        |
|-----------|----------------------------|----------------|------------------------|
|           | Воздухонагреватель водяной | Длина трубок   | Высота трубной решетки |
| КПКЦ 1,6  | BOB-1,6-Np-Mx              | 570            | 580                    |
| КПКЦ 3,15 | BOB-3,15-Np-Mx             | 570            | 580                    |
| КПКЦ 5    | BOB-5-Np-Mx                | 870            | 880                    |
| КПКЦ 6,3  | BOB-6,3-Np-Mx              | 1170           | 1180                   |
| КПКЦ 8-1  | BOB-8-1-Np-Mx              | 1470           | 1480                   |
| кпкц 8    | BOB-8-Np-Mx                | 870            | 880                    |
| КПКЦ 10   | BOB-10-Np-Mx               | 1170           | 1180                   |
| КПКЦ 12,5 | B0B-12,5-Np-Mx             | 1170           | 1180                   |
| КПКЦ 16   | BOB-16-Np-Mx               | 1470           | 1480                   |
| КПКЦ 20   | BOB-20-Np-Mx               | 1770           | 1780                   |
| КПКЦ 25   | BOB-25-Np-Mx               | 1770           | 1780                   |
| КПКЦ 31,5 | B0B-31,5-Np-Mx             | 1770           | 1780                   |
| КПКЦ 40   | BOB-40-Np-Mx               | 2070           | 2080                   |
| КПКЦ 50   | BOB-50-Np-Mx               | 2170           | 2170                   |
| КПКЦ 63   | BOB-63-Np-Mx               | 2470           | 2470                   |
| КПКЦ 80   | BOB-80-Np-Mx               | 3070           | 3070                   |
| КПКЦ 100  | BOB-100-Np-Mx              | 3670           | 3670                   |

**Примечание:** Np - количество рядов (2,3,4)

Мх - количество ходов (2,4,6,8)

Таб. 20. Технические характеристики. Блок воздухоохладителя жидкостного (медная труба с алюминиевым оребрением).

| Vouguuyoyo | Pagaryayarangangan paggyay | Размеры фронта | ального сечения        |
|------------|----------------------------|----------------|------------------------|
|            | Воздухонагреватель водяной | Длина трубок   | Высота трубной решетки |
| КПКЦ 1,6   | AC-c-d-e-f-450-g-h         | 450            | 300                    |
| КПКЦ 3,15  | AC-c-d-e-f-450-g-h         | 450            | 600                    |
| КПКЦ 5     | AC-c-d-e-f-745-g-h         | 745            | 600                    |
| КПКЦ 6,3   | AC-c-d-e-f-1050-g-h        | 1050           | 600                    |
| КПКЦ 8-1   | AC-c-d-e-f-1330-g-h        | 1330           | 600                    |
| кпкц 8     | AC-c-d-e-f-745-g-h         | 745            | 900                    |
| КПКЦ 10    | AC-c-d-e-f-1050-g-h        | 1050           | 900                    |
| КПКЦ 12,5  | AC-c-d-e-f-1050-g-h        | 1050           | 1200                   |
| КПКЦ 16    | AC-c-d-e-f-1300-g-h        | 1300           | 1200                   |
| КПКЦ 20    | AC-c-d-e-f-1600-g-h        | 1600           | 1200                   |
| КПКЦ 25    | AC-c-d-e-f-1600-g-h        | 1600           | 1500                   |
| КПКЦ 31,5  | AC-c-d-e-f-1600-g-h        | 1600           | 1800                   |
| КПКЦ 40    | AC-c-d-e-f-1900-g-h        | 1900           | 1800                   |
| КПКЦ 50    | 2xAC-c-d-e-f-1850-g-h      | 1850           | 2x1150                 |
| КПКЦ 63    | 2xAC-c-d-e-f-2230-g-h      | 2230           | 2x1150                 |
| КПКЦ 80    | 2xAC-c-d-e-f-2750-g-h      | 2750           | 2x1150                 |
| КПКЦ 100   | 2xAC-c-d-e-f-1650-g-h      | 2x1630         | 2300                   |

**Примечание:** с -VL и VR (левое и правое исполнение)

d - H и M (геометрия пластин оребрения)

е - количество рядов отверстий в пластине оребрения

f - количество отверстий в ряду в пластине оребрения

g -шаг между листами оребрения

h - количество змеевиков в теплообменнике

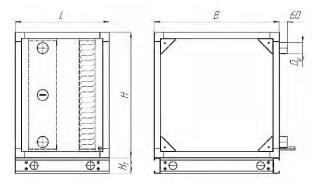



Рис. 11. Габаритные размеры. Блок воздухоохладителя жидкостного.

Таб. 21. Габаритные размеры. Блок воздухоохладителя жидкостного.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| L             | 660 | 660  | 660  | 660  | 660  | 660  | 700  | 700  | 700  | 700  | 700  | 700  | 700  | 740  | 740  | 740  | 740  |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| Масса, кг     | 32  | 62   | 79   | 98   | 123  | 119  | 139  | 145  | 188  | 216  | 246  | 278  | 317  | 356  | 390  | 460  | 485  |





#### Описание

Для равномерного распределения смеси жидкого и газообразного хладагента, поступающего в испаритель по трубкам, используется распределитель в виде "паука". "Паук" размещается вертикально для лучшего распределения потока хладагента. По умолчанию, компрессорно-конденсаторная установка в комплект поставки не входит.

Таб. 22. Технические характеристики. Блок воздухоохладителя непосредственного испарения.

| V           | D                          | Размеры фронта | ального сечения        |
|-------------|----------------------------|----------------|------------------------|
| Кондиционер | Воздухонагреватель водяной | Длина трубок   | Высота трубной решетки |
| КПКЦ 1,6    | DX-VR-H-p-10-480-dw-m      | 480            | 250                    |
| КПКЦ 3,15   | DX-VR-H-p-24-480-dw-m      | 480            | 600                    |
| КПКЦ 5      | DX-VR-H-p-24-770-dw-m      | 770            | 600                    |
| КПКЦ 6,3    | DX-VR-H-p-24-1070-dw-m     | 1070           | 600                    |
| КПКЦ 8-1    | DX-VR-H-p-24-1370-dw-m     | 1370           | 600                    |
| КПКЦ 8      | DX-VR-H-p-36-770-dw-m      | 770            | 900                    |
| КПКЦ 10     | DX-VR-H-p-36-1070-dw-m     | 1070           | 900                    |
| КПКЦ 12,5   | DX-VR-M-p-24-1050-dw-m     | 1050           | 1200                   |
| КПКЦ 16     | DX-VR-M-p-24-1350-dw-m     | 1350           | 1200                   |
| КПКЦ 20     | DX-VR-M-p-24-1650-dw-m     | 1650           | 1200                   |
| КПКЦ 25     | DX-VR-M-p-30-1650-dw-m     | 1650           | 1500                   |
| КПКЦ 31,5   | DX-VR-M-p-36-1630-dw-m     | 1630           | 1800                   |
| КПКЦ 40     | DX-VR-M-p-36-1920-dw-m     | 1920           | 1800                   |
| КПКЦ 50     | DX-VR-M-p-22-1970-dw-m     | 1970           | 2200                   |
| КПКЦ 63     | DX-VR-M-p-22-2270-dw-m     | 2270           | 2200                   |
| КПКЦ 80     | DX-VR-M-p-22-2870-dw-m     | 2870           | 2200                   |
| КПКЦ 100    | DX-VR-M-p-22-3470-dw-m     | 3470           | 2500                   |

**Примечание:** DX- фреоновый охладитель

VR- монтажное исполнение вертикальное, обдув слева на право, противоток

H-труба D 9,52 мм, шахматное расположение, расстояние между рядами (h) 21,65 мм

M- труба D 12 мм, шахматное расположение, расстояние между рядами (h) 25 мм

р- количество рядов отверстий в пластине оребрения:

1+4 для Н

1+4 для М

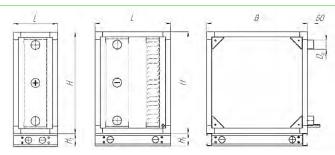



Рис. 12. Габаритные размеры. Блок воздухоохладителя непосредственного испарения.

Таб. 23. Габаритные размеры. Блок воздухоохладителя непосредственного испарения.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| L             | 660 | 660  | 660  | 660  | 660  | 660  | 700  | 700  | 700  | 700  | 700  | 700  | 700  | 740  | 740  | 740  | 740  |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| Масса, кг     | 32  | 62   | 79   | 98   | 123  | 119  | 139  | 145  | 188  | 216  | 246  | 278  | 317  | 356  | 390  | 460  | 485  |

## 1.8 БЛОК ФОРСУНОЧНОГО УВЛАЖНЕНИЯ







Форсуночная оросительная камера применяется для регулирования относительной влажности приточного воздуха, а также для охлаждения в зависимости от температуры распыляемой воды. Распыление осуществляется с помощью форсунок, подача воды осуществляется насосом.

Для исключения уноса капель воды на выходе секции увлажнения устанавливается каплеуловитель. В зависимости от требуемых тепловлажностных параметров, которые должны быть обеспечены после камеры орошения, и от выбранной схемы автоматического регулирования, глубина процессов обработки в таких камерах характеризуется коэффициентами адиабатной эффективности, который существенно различается и колеблется от 0,65 до 0,97.

Камера орошения должна иметь три конструктивных исполнения, обеспечивающих три различных уровня требуемой адиабатной эффективности (E\_a=0,65;0,85 и 0,95).



- 1. Возможность применения управляемых процессов тепломассообмена между воздухом и водой;
- 2. Возможность применения адиабатных и политропных процессов обработки воздуха;
- 3. Очистка воздуха от пыли и газов;
- 4. Сравнительно малое аэродинамическое сопротивление;
- 5. Простота конструкции.



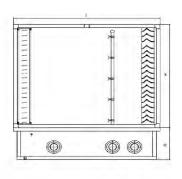




Рис. 13. Габаритные размеры. Блок форсуночного увлажнения.

Таб. 24. Габаритные размеры. Блок форсуночного увлажнения.

| Размер,<br>мм | 1,6 | 3,15 | 5 | 6,3 | 8-1 | 8 | 10   | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|------|---|-----|-----|---|------|------|------|------|------|------|------|------|------|------|------|
| В             | -   | -    | - | -   | -   | - | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | -   | -    | - | -   | -   | - | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| H1            | -   | -    | - | -   | -   | - | 365  | 365  | 365  | 365  | 365  | 365  | 365  | 365  | 500  | 500  | 500  |
| L             | -   | -    | - | -   | -   | - | 1600 | 1600 | 1600 | 1600 | 1600 | 1800 | 1800 | 2000 | 2000 | 2000 | 2000 |
| Масса, кг     | -   | -    | - | -   | -   | - | 420  | 460  | 520  | 610  | 660  | 690  | 720  | 850  | 950  | 1400 | 1600 |







### $(\uparrow)$

#### Преимущества

- 1. Малое энергопотребление по сравнению с другими блоками увлажнения, мощность, потребляемая насосом от 50 до 270 Вт;
- 2. Высокие значения коэффициента эффективности процесса тепломассообмена за счет прямого контакта воздуха и воды, возможность изменения коэффициента эффективности за счет применения насадки разной глубины;
- 3. Компактная конструкция и малые размеры, так как отсутствует капли воды и нет необходимости в требуемой длине для испарения капель;
- 4. Не требует специальной обработки воды, отпадает необходимость в обессоливающей установке;
- 5. Очистка воздуха от пыли, содержащей бактерии и микроорганизмы, и минеральных солей, которые остаются на поверхности материала насадки и смываются вытекающей водой в дренажах;
- 6. Малое аэродинамическое сопротивление;
- 7. Более высокие допустимые скорости воздуха; максимальная скорость воздуха, выше которой требуется установка каплеуловителя, составляет 3,5 м/с;
- 8. Кассеты увлажнителя из невоспламеняющегося материала;
- 9. Простое техническое обслуживание.



Блок-камера сотового увлажнения предназначена для испарительного охлаждения и увлажнения воздуха в адиабатическом режиме с коэффициентами адиабатической эффективности — 65, 85, 95%.

Принцип работы основан на природном свойстве воды – испаряется при прохождении потока воздуха сквозь влажную поверхность, коэффициент адиабатической эффективности зависит не от расхода воды, а от скорости движения воздуха и площади смоченной поверхности насадки, определяемой ее глубиной.

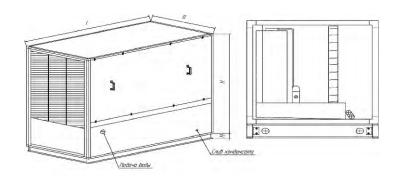



Рис. 14. Габаритные размеры. Блок сотового увлажнения.

Таб. 25. Габаритные размеры. Блок сотового увлажнения.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 | 16   | 20   | 25   |      | 40   | 50* | 63* | 80* | 100* |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|------|
| В             | -   | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | -   | -   | -   | -    |
| Н             | -   | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | -   | -   | -   | -    |
| H1            | -   | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | -   | -   | -   | -    |
| L             | -   | 1060 | 1060 | 1060 | 1060 | 1060 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | 1100 | -   | -   | -   | -    |
| Масса, кг     | -   | 70   | 85   | 105  | 110  | 106  | 120  | 140  | 155  | 245  | 275  | 300  | 350  | -   | -   | -   | -    |



## **Назначение**

Паровые увлажнители применяются для регулирования относительной влажности приточного воздуха. Применяется при изотермическом увлажнении (когда температура воздуха не меняется, при этом распределяемый пар увеличивает его влажность). Состоит из электрического парогенератора фирмы САREL, парораспределителя, размещенного в установке, эластичного трубопровода, соединяющего парораспределитель с резервуаром парогенератора и гидростатом. Внутри парогенератора находится резервуар с нагревательными элементами, которые обеспечивают преобразование воды в пар.



- 1. Обеспечивает высокое качество обрабатываемого воздуха по гигиеническим требованиям;
- 2. Изотермический процесс увлажнения; меньше расход теплоты в воздухонагревателе первого подогрева;
- 3. Исключение второго подогрева и всех сопутствующих элементов системы теплоснобжения;
- 4. Управляемый процесс увлажнения;
- 5. Гибкое и точное (от ±1% при деминерализованной воде до ±2% при неподготовленной и мягкой воде) при пропорциональном регулировании поддержание заданного значения относительной влажности в помещении, короткое время отклика с минимальными отклонениями от заданных параметров;
- 6. Не требует специальной обработки воды, отпадает необходимость в обессоливающей установке;
- 7. Минеральные соли накапливаются в паровом цилиндре и не поступают с паром в помещение;
- 8. Бесшумная работа;
- 9. Простое техническое обслуживание;
- 10. Высокая надежность.

Таб. 26. Технические характеристики. Блок парового увлажнения.

| Параметр                      |       |       |       |       |       |       |         |         |       |       |       |       |       |       |
|-------------------------------|-------|-------|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|-------|
| Параметр                      | UE001 | UE003 | UE005 | UE008 | UE009 | UE010 | UE015   | UE018   | UE025 | UE035 | UE045 | UE065 | UE090 | UE130 |
| Паропроизводительность, кг/ч  | 1,5   | 3     | 5     | 8     | 9     | 10    | 15      | 18      | 25    | 35    | 45    | 65    | 90    | 130   |
| Потребляемая мощность,кВт     | 1,12  | 2,25  | 3,75  | 6,0   | 6,75  | 7,5   | 11,25   | 13,5    | 18,75 | 26,25 | 33,75 | 48,75 | 67,5  | 97,5  |
| Расход воды л/ч               | 0,6   | 0,6   | 0,6   | 1,1   | 0,6   | 1,1   | 1,1     | 1,1     | 5,85  | 5,85  | 5,85  | 7     | 14    | 14    |
| Напряжение, В                 |       |       |       |       |       |       | 220     | /380    |       |       |       |       |       |       |
| Используемая вода             |       |       |       |       |       |       | Вода пі | итьевая |       |       |       |       |       |       |
| Диаметр парового патрубка, мм | 22/30 | 22/30 | 30    | 30    | 30    | 30    | 30      | 30      | 40    | 40    | 40    | 2*40  | 2*40  | 2*40  |

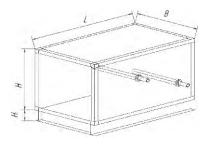



Рис. 15. Габаритные размеры. Блок парового увлажнения.

Таб. 27. Габаритные размеры. Блок парового увлажнения.

| Размер,<br>мм | 1,6  |      | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 |      |      | 25   | 31,5 |      | 50   | 63   | 80   | 100  |
|---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700  | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| Н             | 450  | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| H1            | 100  | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| L=1000 мм     | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Масса, кг     | 41   | 49   | 58   | 67   | 93   | 79   | 101  | 113  | 125  | 138  | 147  | 154  | 167  | 238  | 258  | 290  | 325  |





## **Назначение**

Блок промежуточный выполнен в виде корпуса, оборудованного со стороны зоны обслуживания съемной панелью, и служит для формирования потока воздуха, изменения его направления, а также для проведения технического обслуживания кондиционеров.

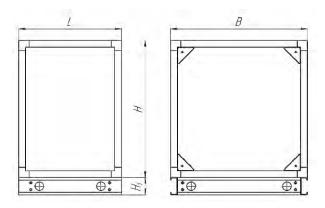



Рис. 16. Габаритные размеры. Блок промежуточный.

Таб. 28. Габаритные размеры. Блок промежуточный.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   |      |      | 20   |      |      | 40   | 50   | 63   | 80   | 100  |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200 | 3800 |
| н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600 | 2600 |
| L             | 425 | 425  | 425  | 425  | 425  | 525  | 565  | 665  | 665  | 665  | 765  | 865  | 865  | 1105 | 1105 | 1105 | 1105 |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200  | 200  |
| Масса, кг     | 20  | 26   | 32   | 36   | 44   | 36   | 56   | 68   | 75   | 85   | 100  | 115  | 124  | 225  | 240  | 270  | 302  |

## 1.12 БЛОК ТЕПЛОУТИЛИЗАЦИИ ПЛАСТИНЧАТЫЙ





Для энергосбережения на подогрев приточного воздуха применяется пластинчатый рекуператор.

Поверхность теплообмена рекуператора образована пакетом пластин, выполненных из специального алюминия. Пластины создают систему каналов для протекания двух потоков воздуха. В теплообменнике происходит теплоотдача между этими тщательно разделенными потоками с различной температурой. Принцип действия основан на том, что уходящий воздух отдает свое тепло теплообменным пластинам, а те в свою очередь, потоку приточного воздуха. Тем самым уменьшаются затраты на нагрев приточного воздуха.

Так как потоки приточного и вытяжного воздуха не пересекаются, исключается передача одним потоком другому загрязнений, запахов, микроорганизмов. Таким образом, теплообменник подходит для случаев, когда, во избежание попадания неприятных запахов в приточный воздух, необходимо исключить смешивание потоков воздуха. В связи с возможностью конденсации влаги из удаляемого воздуха, за теплообменником устанавливается каплеуловитель со сливным поддоном и отводом конденсата. Для защиты от обмерзания на теплообменнике устанавливается реле давления, которое управляет положением клапана обводного канала. При замерзании каналов сопротивление теплообменника повышается. При этом открывается обводной воздушный канал и закрывается воздушный клапан, установленный на стороне приточного воздуха. Приточный воздух проходит через обводной канал теплообменника, а вытяжной через рекуператор, нагревая при этом замершую поверхность теплообменника. После оттаивания закрывается обводной канал и открывается теплообменник для прохода приточного воздуха. Эффективность теплоутилизации до 70%.

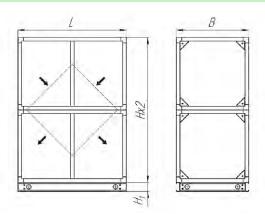



Рис. 17. Габаритные размеры. Блок теплоутилизации пластинчатый.

Таб. 29. Габаритные размеры. Блок теплоутилизации пластинчатый.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 |      |      | 25   |      |      | 50   |      | 80                 | 100  |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------|------|
| В             | 700 | 700  | 1000 | 1300 | 1600 | 1000 | 1300 | 1300 | 1600 | 1900 | 1900 | 1900 | 2200 | 2300 | 2600 | 3200               | 3800 |
| Н             | 450 | 800  | 800  | 800  | 800  | 1090 | 1090 | 1400 | 1400 | 1400 | 1700 | 2000 | 2000 | 2600 | 2600 | 2600               | 2600 |
| L             | 900 | 1400 | 1400 | 1400 | 1400 | 2000 | 2000 | 2300 | 2300 | 2300 | 2600 | 3100 | 3100 | опр  |      | ся исходні<br>ными | ыми  |
| H1            | 100 | 100  | 100  | 100  | 100  | 100  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 200  | 200  | 200                | 200  |
| Масса, кг     | 85  | 185  | 210  | 270  | 325  | 420  | 495  | 545  | 620  | 695  | 780  | 990  | 1100 | опр  |      | я исходні<br>ными  | ыми  |









В регенеративных (роторных) теплообменниках поверхность насадки попеременно контактирует и обменивается теплотой с охлаждаемой и нагреваемой средой.

Передача теплоты в регенеративных вращающихся теплообменниках осуществляется одновременно с перемещением насадки из потока греющего воздуха в поток нагреваемого воздуха. Потоки воздуха проходят с определенной периодичностью в противоположных направлениях через одни и те же каналы: в одном потоке теплота аккумулируется теплообменной массой насадки, в другом передается нагреваемому воздуху. Одновременно с передачей явной теплоты происходит передача скрытой теплоты в виде сконденсировавшейся в потоке удаляемого воздуха влаги, испаряющейся полностью или частично в потоке приточного воздуха при всех типах насадки.

Коэффициент эффективности регенеративного вращающего теплообменника зависит от соотношения потоков удаляемого и приточного воздуха. Устойчивая работа и максимальное значение коэффициента эффективности достигается при равенстве расходов удаляемого и приточного воздуха и может достигать 80%.

Таким образом, роторный рекуператор является самым эффективным и компактным, по сравнению с теплообменниками других конструкций.

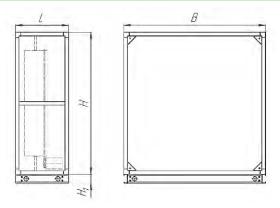
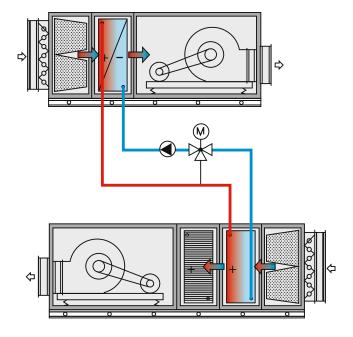




Рис. 18. Габаритные размеры. Блок ттеплоутилизации роторный.

Таб. 30. Габаритные размеры. Блок ттеплоутилизации роторный.

| Размер,<br>мм | 1,6 | 3,15 | 5    | 6,3  | 8-1  | 8    | 10   | 12,5 | 16   | 20   | 25   | 31,5                 | 40   | 50 | 63 | 80                 | 100 |
|---------------|-----|------|------|------|------|------|------|------|------|------|------|----------------------|------|----|----|--------------------|-----|
| В             | 700 | 900  | 1050 | 1300 | 1600 | 1200 | 1500 | 1700 | 1800 | 1900 | 2300 | 2500                 | 2700 |    |    |                    |     |
| L             | 400 | 400  | 400  | 400  | 400  | 400  | 400  | 400  | 400  | 400  | 440  | 440                  | 440  |    |    |                    |     |
| D             | 605 | 800  | 950  | 1100 | 1350 | 1100 | 1350 | 1500 | 1600 | 1700 | 2100 | 2340                 | 2540 | оп |    | ся исходні<br>ными | ыми |
| Н             | 900 | 1600 | 1600 | 1600 | 1600 | 2180 | 2180 | 2800 | 2800 | 2800 | 3400 | 4000                 | 4000 |    |    |                    |     |
| Масса, кг     | 80  | 100  | 145  | 165  | 215  | 165  | 215  | 265  | 265  | 305  |      | яется исх<br>данными |      |    |    |                    |     |

## БЛОК ТЕПЛОУТИЛИЗАЦИИ С ПРОМЕЖУТОЧНЫМ ТЕПЛОНОСИТЕЛЕМ





Системы утилизации или регенерации теплоты с промежуточным теплоносителем состоят из теплообменников, расположенных в каналах удаляемого и приточного воздуха, соединенных замкнутым циркуляционным контуром. Циркуляция теплоносителя осуществляется при помощи насосов. В теплообменниках удаляемый воздух передает свое тепло промежуточному теплоносителю, нагревающему приточный воздух.



Система с промежуточным теплоносителем применяется там, где недоступно смешение потоков воздуха, а также в случае большого расстояния между приточной и вытяжной установкой. В холодное время года группа теплообменников, расположенных в потоке вытяжного воздуха представляет собой воздухоохладительную установку, а группа теплообменников, расположенных в потоке приточного воздуха воздухонагревательную установку. В теплое время года функции групп меняются. Эффективность теплоутилизации до 55%







В блоке шумоглушения установлен пластинчатый шумоглушитель, предназначенный для снижения уровня звуковой мощности, создаваемой вентилятором центрального кондиционера. Устанавливается обычно после блока вентилятора, между ними обязательно размещают промежуточный блок для распределения потока воздуха после выходного отверстия вентилятора, особенно для вентиляторов с лопатками, загнутыми вперед. При необходимости установки двух блоков шумоглушения между ними также устанавливается промежуточная секция обслуживания, чтобы не допустить уменьшения эффективности снижения уровня шума. Каркас пластин шумоглушителя из оцинкованной стали заполнен звукопоглощающим материалом из минеральной ваты. Поверхность пластин покрыта слоем волокна, препятствующего уносу частиц минеральной ваты потоком воздуха. Для улучшения аэродинамики потока воздуха и снижения потерь давления на концах пластин со стороны входа воздуха предусмотрены обтекатели.

Таб. 31. Технические характеристики. Блок шумоглушителя.

| T              |                    | Снижениє | уровня зву | ковой мощн | ости, дБ в о<br>частота | ктавных пол<br>ами, Гц | посах со сре | днегеометр | ическими |
|----------------|--------------------|----------|------------|------------|-------------------------|------------------------|--------------|------------|----------|
| Типоразмер     | Длина пластин, L,м | 63       | 125        | 250        | 500                     | 1000                   | 2000         | 4000       | 8000     |
| КПКЦ 3,15      | 0,5                | 0,5      | 1,5        | 3,5        | 9                       | 12                     | 9            | 8          | 5,5      |
| КПКЦ 3,15      | 1                  | 1        | 3          | 7          | 20                      | 25                     | 18           | 16         | 11       |
| КПКЦ 3,15      | 1,5                | 1        | 4          | 9          | 27                      | 34                     | 24           | 21         | 13       |
| КПКЦ 3,15      | 2                  | 1,5      | 5          | 12         | 35                      | 42                     | 30           | 25         | 14       |
| КПКЦ-5КПКЦ-100 | 0,5                | 1        | 1,5        | 6          | 9                       | 8                      | 6            | 4,5        | 4        |
| КПКЦ-5КПКЦ-100 | 1                  | 1,5      | 3          | 12         | 18                      | 15                     | 12           | 9          | 8        |
| КПКЦ-5КПКЦ-100 | 1,5                | 2        | 5          | 18         | 25                      | 20                     | 15           | 12         | 11       |
| КПКЦ-5КПКЦ-100 | 2                  | 3        | 7          | 22         | 32                      | 25                     | 18           | 14         | 13       |

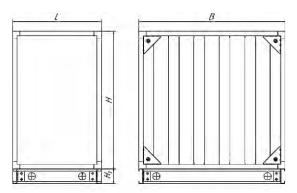



Рис. 19. Габаритные размеры. Блок шумоглушителя.

Таб. 32. Габаритные размеры. Блок шумоглушителя.

| Размер,<br>мм         | 1,6 | 3,15 | 5        | 6,3      | 8-1  | 8    | 10   | 12,5 | 16      | 20       | 25      | 31,5 | 40   | 50   | 63       | 80       | 100  |
|-----------------------|-----|------|----------|----------|------|------|------|------|---------|----------|---------|------|------|------|----------|----------|------|
| В                     | 700 | 700  | 1000     | 1300     | 1600 | 1000 | 1300 | 1300 | 1600    | 1900     | 1900    | 1900 | 2200 | 2300 | 2600     | 3200     | 3800 |
| Н                     | 450 | 800  | 800      | 800      | 800  | 1090 | 1090 | 1400 | 1400    | 1400     | 1700    | 2000 | 2000 | 2600 | 2600     | 2600     | 2600 |
| L                     |     | 60   | 5; 1105; | 1605; 21 | 05   |      |      |      | 645; 11 | 145; 164 | 5; 2145 |      |      | 68   | 5; 1185; | 1685; 21 | 85   |
| H1                    | 100 | 100  | 100      | 100      | 100  | 100  | 150  | 150  | 150     | 150      | 150     | 150  | 150  | 200  | 200      | 200      | 200  |
| Масса, кг<br>(L=605)  | 31  | 41   | 48       | 51       | 52   | 54   | -    | -    | -       | -        | -       | -    | -    | -    | -        | -        | -    |
| Масса, кг<br>(L=1105) | 45  | 60   | 70       | 75       | 77   | 80   | -    | -    | -       | -        | -       | -    | -    | -    | -        | -        | -    |
| Масса, кг<br>(L=1605) | 80  | 90   | 105      | 110      | 115  | 120  | -    | -    | -       | -        | -       | -    | -    | -    | -        | -        | -    |
| Масса, кг<br>(L=2105) | 121 | 136  | 159      | 166      | 174  | 181  | -    | -    | -       | -        | -       | -    | -    | -    | -        | -        | -    |
| Масса, кг<br>(L=645)  | -   | -    | -        | -        | -    | -    | 61   | 68   | 74      | 101      | 108     | 161  | 174  | -    | -        | -        | -    |
| Масса, кг<br>(L=1145) | -   | -    | -        | -        | -    | -    | 90   | 100  | 110     | 150      | 160     | 240  | 260  | -    | -        | -        | -    |
| Масса, кг<br>(L=1645) | -   | -    | -        | -        | -    | -    | 135  | 150  | 165     | 225      | 240     | 360  | 390  | -    | -        | -        | -    |
| Масса, кг<br>(L=2145) | -   | -    | -        | -        | -    | -    | 204  | 226  | 249     | 339      | 361     | 541  | 586  | -    | -        | -        | -    |
| Масса, кг<br>(L=685)  | -   | -    | -        | -        | -    | -    | -    | -    | -       | -        | -       | -    | -    | 181  | 201      | 221      | 254  |
| Масса, кг<br>(L=1185) | -   | -    | -        | -        | -    | -    | -    | -    | -       | -        | -       | -    | -    | 270  | 300      | 330      | 380  |
| Масса, кг<br>(L=1685) | -   | -    | -        | -        | -    | -    | -    | -    | -       | -        | -       | -    | -    | 405  | 450      | 495      | 570  |
| Масса, кг<br>(L=2185) | -   | -    | -        | -        | -    | -    | -    | -    | -       | -        | -       | -    | -    | 405  | 450      | 495      | 570  |





## ОПРОСНЫЙ ЛИСТ НА ПРОЕКТИРОВАНИЕ И ИЗГОТОВЛЕНИЕ ПРИТОЧНОЙ, ВЫТЯЖНОЙ УСТАНОВКИ

| Орг           | анизация:                                 | Объект:                                                                                                          |
|---------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|               | тактное лицо:                             |                                                                                                                  |
|               | ион (город):                              |                                                                                                                  |
| Тел           | ./факс:                                   | Дата:                                                                                                            |
| <u>!</u>      | Внимание                                  |                                                                                                                  |
| Для           | сокращения времени обработки              | заказа просим внимательно и подробно заполнить бланк-заказ.                                                      |
|               | Характеристики установ                    | зки                                                                                                              |
| Типо          | размер АПК                                | Количество, шт                                                                                                   |
|               | <br>Ц                                     |                                                                                                                  |
|               |                                           | системы Сторона обслуживания:                                                                                    |
|               | приток                                    |                                                                                                                  |
|               | приток                                    | вытяжка слева справа                                                                                             |
|               |                                           |                                                                                                                  |
|               | Состав кондиционера                       |                                                                                                                  |
|               | Вход воздуха                              | Рециркуляция                                                                                                     |
|               | Блок вентилятора                          | Расход воздуха, L=м³/ч Свободное давлениеПа  Гибкая вставка на выхлопе вентилятора                               |
|               | Резервный вентилятор                      | Расход воздуха, L=м³/ч Свободное давлениеПа  Установка: по высоте в плане  Гибкая вставка на выхлопе вентилятора |
| льтров        | Грубой очистки<br>ячейковый G3- плоский   | G3                                                                                                               |
| Блок фильтров | Грубой и тонкой очистки<br>карманный G4F9 | G4 F5 F6 F7 F8 F9                                                                                                |

| Блок воздухонагрева-<br>теля жидкостный  | I подогрев                                  | Температура воздуха<br>tвx=*C<br>tвыx=*C             | Температура<br>теплоносителя<br>tвx=*C<br>tвыx=*C | Производительность<br>(необязательно)<br>кВт |                                |
|------------------------------------------|---------------------------------------------|------------------------------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------|
|                                          | II подогрев                                 | Температура воздуха<br>tвx=*C<br>tвыx=*C             | Температура<br>теплоносителя<br>tвx=*C<br>tвыx=*C | Производительность<br>(необязательно)<br>кВт |                                |
| Блок воздухонагрева-<br>теля паровой     | I подогрев                                  | Температура воздуха<br>tвx=*C<br>tвsx=*C             | Температура пара<br>Тпара=*C                      | Производительность<br>(необязательно)<br>кВт |                                |
| Блок возду<br>теля п                     | II подогрев                                 | Температура воздуха<br>tвx=*C<br>tвыx=*C             | Температура пара<br>Тпара=*C                      | Производительность<br>(необязательно)<br>кВт |                                |
| Блок электрический<br>воздухонагревателя | I подогрев                                  | Температура воздуха<br>tвx=*C<br>tвsx=*C             |                                                   | Производительность (необязательно) кВт       |                                |
| Блок элек<br>воздухона                   | II подогрев                                 | Температура воздуха<br>tвx=*C<br>tвыx=*C             |                                                   | Производительность<br>(необязательно)<br>кВт |                                |
|                                          | к воздухоохладителя<br>заратором и поддоном | Параметры воздуха<br>tвx=tвыx=<br>lн= lк=<br>dн= dк= | Тип хладагента<br>Содержание,%                    | Относительная<br>влажность ф,%               | Производительность,<br>кВт     |
| зации                                    | На теплообменниках                          | Туличн.=*C<br>Dуличн.=*C                             | Параметры воздуха Твытяж.=*C dвытяж.=*Cм³         | <br>/ч                                       | Тип хладагента<br>Содержание,% |
| и теплоутилизации                        | Пластинчатый                                |                                                      | Параметры воздуха Твытяж.= *С dвытяж.=*См³,       | <br>/ч                                       |                                |
| Блоки                                    | Вращающийся                                 | Туличн.=*C<br>Dуличн.=*C                             | Параметры воздуха Твытяж.= *С dвытяж.=*См³,       | <br>/ч                                       |                                |
| Бл                                       | юк шумоглушителя                            | Длина пластин, мм                                    | 500 100                                           | 1500                                         | 2000                           |
| Блок-і                                   | камера промежуточная                        |                                                      |                                                   | Длина плас                                   | тин, мм                        |
| Ко                                       | мплект автоматики                           | Да (необходимо запол                                 | інить опросный лист для                           | комплекта автоматики)                        | Нет                            |
|                                          | Упаковка                                    | Полиэтилен                                           | Деревянная обрешет                                | ка (за доп. плату)                           |                                |
| Допо                                     | лнительные сведения                         |                                                      |                                                   |                                              |                                |



# КАЛОРИФЕРЫ КСК



| КСк2-1-02ХЛЗ  | КСк3-1-02ХЛЗ  | КСк4-1-02ХЛЗ  |
|---------------|---------------|---------------|
| КСк2-2-02ХЛЗ  | КСк3-2-02ХЛ3  | КСк4-2-02ХЛЗ  |
| КСк2-3-02ХЛЗ  | КСк3-3-02ХЛЗ  | КСк4-3-02ХЛЗ  |
| КСк2-4-02ХЛЗ  | КСк3-4-02ХЛ3  | КСк4-4-02ХЛЗ  |
| КСк2-5-02ХЛЗ  | КСк3-5-02ХЛ3  | КСк4-5-02ХЛЗ  |
| КСК2-6-02ХЛЗ  | КСк3-6-02ХЛЗ  | КСк4-6-02ХЛЗ  |
| КСК2-7-02ХЛЗ  | КСк3-7-02ХЛ3  | КСк4-7-02ХЛЗ  |
| КСк2-8-02ХЛЗ  | КСк3-8-02ХЛЗ  | КСк4-8-02ХЛЗ  |
| КСк2-9-02ХЛЗ  | КСк3-9-02ХЛЗ  | КСк4-9-02ХЛЗ  |
| КСк2-10-02ХЛЗ | КСк3-10-02ХЛЗ | КСк4-10-02ХЛЗ |
| КСк2-11-02ХЛЗ | КСк3-11-02ХЛЗ | КСк4-11-02ХЛЗ |
| КСк2-12-02ХЛЗ | КСк3-12-02ХЛЗ | КСк4-12-02ХЛЗ |
|               |               |               |



#### Условные обозначения

- 02 теплоноситель вода
- ХЛ климатическое исполнение изделий (эксплуатация изделий в районе с умеренным и холодным климатом)
- категория размещения изделия (для эксплуатации в закрытых помещениях с естественной вентиляцией без искусственно регулируемых климатических условий)



#### Назначение

Калориферы предназначены для нагрева воздуха в системах отопления, вентиляции и кондиционирования воздуха. Воздух должен быть с предельно допустимым содержанием химически агрессивных веществ по ГОСТ 12.1.005-76 с запыленностью не более 0,5 мг/м $^{^3}$  и не содержать липких веществ и волокнистых материалов.

Калориферы предназначены для эксплуатации в условиях умеренного и холодного климата категории размещения 3 по ΓΟCT 15150-69.

Калориферы можно применять в качестве теплоутилизаторов с промежуточным теплоносителем.

Калориферы изготавливаются с профильным щитком повышенной жесткости для удобства монтажа.

#### 🥸) Технические характеристики

#### Технические характеристики в 47, 48, 49 таблицах приведены для режима:

- температура воды на входе 150°C;
- температура воды на выходе 70°C;
- температура воздуха на входе минус 20°C;
- массовая скорость в набегающем потоке 3,6 кг/м<sup>2</sup>с;
- скорость воды в трубах 0,7±0,035 м/с.

#### Теплоноситель - горячая или перегретая вода с параметрами:

- рабочее давление не более -1,2 МПа;
- температура не более -190°C.

#### Показатели надежности:

- средний срок службы, лет, не менее -11;
- полный установленный ресурс, ч, не менее -13200;
- установленная безотказная наработка, ч, не менее 3000;
- среднее время восстановления работоспособного состояния, ч, не более - 12.



#### Внимание

Калориферы КСК полностью замещают по основным характеристикам аналоги ВНВ113.

Пример: КСК 2-1-02 соответсвует ВНВ 113-201-01.

#### Технические характеристики

Таб. 33. Технические характеристики 2-х рядных калориферов типа КСк-2.

|                                                  |                     |                     |                     |                     | Зна                 | ачение па           | раметра             |                     |                     |                      |                      |                      |
|--------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|
| Наименование параметра                           | КСк<br>2-1<br>02XЛ3 | КСк<br>2-2<br>02ХЛ3 | КСк<br>2-3<br>02ХЛ3 | КСк<br>2-4<br>02ХЛ3 | КСк<br>2-5<br>02ХЛ3 | КСк<br>2-6<br>02ХЛ3 | КСк<br>2-7<br>02ХЛ3 | КСк<br>2-8<br>02ХЛ3 | КСк<br>2-9<br>02ХЛ3 | КСк<br>2-10<br>02ХЛ3 | КСк<br>2-11<br>02ХЛ3 | КСк<br>2-12<br>02ХЛ3 |
| Производительность по воздуху, м <sup>3</sup> /ч | 2000                | 2500                | 3150                | 4000                | 5000                | 2500                | 3150                | 4000                | 5000                | 6300                 | 16000                | 25000                |
| Производительность по теплу, кВт                 | 24,2                | 31,0                | 39,5                | 49,8                | 65,4                | 32,9                | 42,8                | 54,7                | 68,4                | 90,0                 | 241,2                | 374                  |
| Площадь поверхности теплообмена, ${\sf m}^2$     | 6,7                 | 8,3                 | 9,9                 | 11,5                | 14,8                | 9,0                 | 11,2                | 13,4                | 15,6                | 20,0                 | 58,7                 | 88,7                 |
| Площадь фронтального сечения, м²                 | 0,197               | 0,244               | 0,290               | 0,337               | 0,430               | 0,267               | 0,329               | 0,392               | 0,455               | 0,581                | 1,66                 | 2,488                |
| Площадь живого сечения, м²                       | 0,00062             | 0,00062             | 0,00062             | 0,00062             | 0,00062             | 0,00084             | 0,00084             | 0,00084             | 0,00084             | 0,00084              | 0,00171              | 0,00258              |
| Число ходов по теплоносителю                     | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                    | 4                    | 4                    |
| Расход по теплоносителю, min, м <sup>3</sup>     | 0,26784             | 0,26784             | 0,26784             | 0,26784             | 0,26784             | 0,36288             | 0,36288             | 0,36288             | 0,36288             | 0,36288              | 0,73872              | 1,11456              |
| Расход по теплоносителю, max, м <sup>3</sup>     | 3,5712              | 3,5712              | 3,5712              | 3,5712              | 3,5712              | 4,8384              | 4,8384              | 4,8384              | 4,8384              | 4,8384               | 9,8496               | 14,8608              |
| Масса, кг, не более                              | 19                  | 22                  | 25                  | 27                  | 33                  | 25                  | 28                  | 32                  | 35                  | 42                   | 114                  | 166                  |

Отопительное оборудование 33

Таб. 34. Технические характеристики 3-х рядных калориферов типа КСк-3.

|                                        | Значение параметра  |                     |                     |                     |                     |                     |                     |                     |                     |                      |                      |                      |  |  |
|----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|--|--|
| Наименование параметра                 | КСк<br>3-1<br>02XЛ3 | КСк<br>3-2<br>02XЛ3 | КСк<br>3-3<br>02XЛ3 | КСк<br>3-4<br>02XЛ3 | КСк<br>3-5<br>02XЛ3 | КСк<br>3-6<br>02XЛ3 | КСк<br>3-7<br>02XЛ3 | КСк<br>3-8<br>02ХЛ3 | КСк<br>3-9<br>02XЛ3 | КСк<br>3-10<br>02XЛ3 | КСк<br>3-11<br>02XЛ3 | КСк<br>3-12<br>02XЛ3 |  |  |
| Производительность по<br>воздуху, м³/ч | 2000                | 2500                | 3150                | 4000                | 5000                | 2500                | 3150                | 4000                | 5000                | 6300                 | 16000                | 25000                |  |  |
| Производительность по<br>теплу, кВт    | 37,0                | 47,4                | 60,0                | 75,4                | 98,4                | 50,2                | 65,0                | 83,0                | 103,1               | 135,2                | 360,0                | 556,4                |  |  |
| Площадь поверхности<br>теплообмена, м² | 10,2                | 12,7                | 15,2                | 17,6                | 22,6                | 13,4                | 16,6                | 20,0                | 23,2                | 29,6                 | 86,3                 | 130,1                |  |  |
| Площадь фронтального<br>сечения, м²    | 0,197               | 0,244               | 0,290               | 0,337               | 0,430               | 0,267               | 0,329               | 0,392               | 0,455               | 0,581                | 1,66                 | 2,488                |  |  |
| Площадь живого сечения, м²             | 0,00094             | 0,00094             | 0,00094             | 0,00094             | 0,00094             | 0,00127             | 0,00127             | 0,00127             | 0,00127             | 0,00127              | 0,00258              | 0,00389              |  |  |
| Число ходов по тепло-<br>носителю      | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                    | 4                    | 4                    |  |  |
| $Pacxod$ по теплоносителю, min, $M^3$  | 0,40608             | 0,40608             | 0,40608             | 0,40608             | 0,40608             | 0,54864             | 0,54864             | 0,54864             | 0,54864             | 0,54864              | 1,11456              | 1,68048              |  |  |
| Расход по теплоносителю,<br>max, м³    | 5,4144              | 5,4144              | 5,4144              | 5,4144              | 5,4144              | 7,3152              | 7,3152              | 7,3152              | 7,3152              | 7,3152               | 14,8608              | 22,4064              |  |  |
| Масса, кг, не более                    | 25                  | 29                  | 33                  | 37                  | 45                  | 35                  | 40                  | 45                  | 50                  | 60                   | 155                  | 230                  |  |  |

Таб. 35. Технические характеристики 4-х рядных калориферов типа КСк-4.

|                                        |                     | Значение параметра  |                     |                     |                     |                     |                     |                     |                     |                      |                      |                      |  |
|----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|--|
| Наименование параметра                 | КСк<br>4-1<br>02XЛ3 | КСк<br>4-2<br>02XЛ3 | КСк<br>4-3<br>02XЛ3 | КСк<br>4-4<br>02XЛ3 | КСк<br>4-5<br>02XЛ3 | КСк<br>4-6<br>02XЛ3 | КСк<br>4-7<br>02XЛ3 | КСк<br>4-8<br>02ХЛ3 | КСк<br>4-9<br>02ХЛЗ | КСк<br>4-10<br>02XЛ3 | КСк<br>4-11<br>02XЛ3 | КСк<br>4-12<br>02XЛ3 |  |
| Производительность по<br>воздуху, м³/ч | 2000                | 2500                | 3150                | 4000                | 5000                | 2500                | 3150                | 4000                | 5000                | 6300                 | 16000                | 25000                |  |
| Производительность по теплу, кВт       | 43,4                | 58,5                | 70,4                | 88,7                | 115,2               | 59,0                | 76,0                | 97,0                | 120,4               | 157,2                | 417,3                | 648,1                |  |
| Площадь поверхности<br>теплообмена, м² | 13,4                | 16,6                | 19,8                | 23,0                | 29,5                | 17,6                | 21,8                | 26,2                | 30,4                | 39,0                 | 114,2                | 172,5                |  |
| Площадь фронтального<br>сечения, м²    | 0,197               | 0,244               | 0,290               | 0,337               | 0,430               | 0,267               | 0,329               | 0,392               | 0,455               | 0,581                | 1,66                 | 2,488                |  |
| Площадь живого сечения, м²             | 0,00123             | 0,00123             | 0,00123             | 0,00123             | 0,00123             | 0,00167             | 0,00167             | 0,00167             | 0,00167             | 0,00167              | 0,00341              | 0,00516              |  |
| Число ходов по тепло<br>носителю       | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                   | 4                    | 4                    | 4                    |  |
| Расход по теплоносителю,<br>min, м³    | 0,53136             | 0,53136             | 0,53136             | 0,53136             | 0,53136             | 0,72144             | 0,72144             | 0,72144             | 0,72144             | 0,72144              | 1,47312              | 2,22912              |  |
| Расход по теплоносителю,<br>max, м³    | 7,0848              | 7,0848              | 7,0848              | 7,0848              | 7,0848              | 9,6192              | 9,6192              | 9,6192              | 9,6192              | 9,6192               | 19,6416              | 29,7216              |  |
| Масса, кг, не более                    | 30                  | 35                  | 40                  | 45                  | 55                  | 40                  | 45                  | 50                  | 60                  | 75                   | 200                  | 290                  |  |



### Габаритные и присоединительные размеры

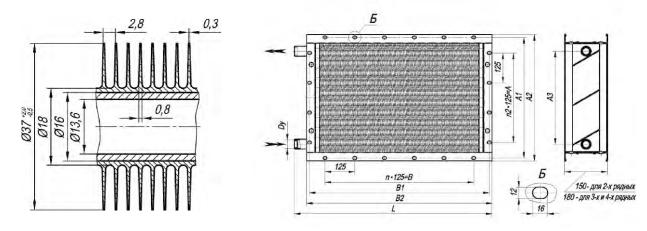



Рис. 20. Оребрение элемента теплоотдающего.

Рис. 21. Габаритные и присоединительные размеры калорифера типа КСк.

Таб. 36. Габаритные и присоединительные размеры калориферов типа КСк.

|                   | Значение параметра         |                            |                            |                            |                            |                            |                            |                            |                            |                               |                               |                               |  |  |  |
|-------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|--|
| Размеры,<br>мм    | КСк2-1<br>КСк3-1<br>КСк4-1 | КСк2-2<br>КСк3-2<br>КСк4-2 | КСк2-3<br>КСк3-3<br>КСк4-3 | КСк2-4<br>КСк3-4<br>КСк4-4 | КСк2-5<br>КСк3-5<br>КСк4-5 | КСк2-6<br>КСк3-6<br>КСк4-6 | КСк2-7<br>КСк3-7<br>КСк4-7 | КСк2-8<br>КСк3-8<br>КСк4-8 | КСк2-9<br>КСк3-9<br>КСк4-9 | КСк2-10<br>КСк3-10<br>КСк4-10 | КСк2-11<br>КСк3-11<br>КСк4-11 | КСк2-12<br>КСк3-12<br>КСк4-12 |  |  |  |
| Α                 | 250                        | 250                        | 250                        | 250                        | 250                        | 375                        | 375                        | 375                        | 375                        | 375                           | 875                           | 1375                          |  |  |  |
| A1 ±3             | 426                        | 426                        | 426                        | 426                        | 426                        | 551                        | 551                        | 551                        | 551                        | 551                           | 1051                          | 1551                          |  |  |  |
| A2                | 450                        | 450                        | 450                        | 450                        | 450                        | 575                        | 575                        | 575                        | 575                        | 575                           | 1075                          | 1575                          |  |  |  |
| А3                | 305                        | 305                        | 305                        | 305                        | 305                        | 430                        | 430                        | 430                        | 430                        | 430                           | 912                           | 1392                          |  |  |  |
| В                 | 500                        | 625                        | 750                        | 875                        | 1125                       | 500                        | 625                        | 750                        | 875                        | 1125                          | 1625                          | 1625                          |  |  |  |
| B1 ±3             | 578                        | 703                        | 828                        | 953                        | 1203                       | 578                        | 703                        | 828                        | 953                        | 1203                          | 1703                          | 1703                          |  |  |  |
| B2                | 602                        | 727                        | 852                        | 977                        | 1227                       | 602                        | 727                        | 852                        | 977                        | 1227                          | 1727                          | 1727                          |  |  |  |
| L                 | 650                        | 775                        | 900                        | 1025                       | 1275                       | 650                        | 775                        | 900                        | 1025                       | 1275                          | 1775                          | 1775                          |  |  |  |
| Dy                | 32                         | 32                         | 32                         | 32                         | 32                         | 32                         | 32                         | 32                         | 32                         | 32                            | 50                            | 50                            |  |  |  |
| n                 | 4                          | 5                          | 6                          | 7                          | 9                          | 4                          | 5                          | 6                          | 7                          | 9                             | 13                            | 13                            |  |  |  |
| n2                | 2                          | 2                          | 2                          | 2                          | 2                          | 3                          | 3                          | 3                          | 3                          | 3                             | 7                             | 11                            |  |  |  |
| V, м <sup>3</sup> | 0,053                      | 0,063                      | 0,073                      | 0,083                      | 0,103                      | 0,067                      | 0,080                      | 0,093                      | 0,106                      | 0,132                         | 0,343                         | 0,503                         |  |  |  |

Отопительное оборудование — 39







| КП2-1-СК-01У3  | КПЗ-1-СК-01УЗ  | КП4-1-СК-01У3  |
|----------------|----------------|----------------|
| КП2-2-СК-01У3  | КПЗ-2-СК-01УЗ  | КП4-2-СК-01У3  |
| КП2-3-СК-01У3  | КПЗ-3-СК-01УЗ  | КП4-3-СК-01У3  |
| КП2-4-СК-01У3  | КПЗ-4-СК-01УЗ  | КП4-4-СК-01У3  |
| КП2-5-СК-01У3  | КПЗ-5-СК-01УЗ  | КП4-5-СК-01У3  |
| КП2-6-СК-01У3  | КПЗ-6-СК-01УЗ  | КП4-6-СК-01У3  |
| КП2-7-СК-01У3  | КП3-7-СК-01У3  | КП4-7-СК-01У3  |
| КП2-8-СК-01У3  | КПЗ-8-СК-01УЗ  | КП4-8-СК-01У3  |
| КП2-9-СК-01У3  | КПЗ-9-СК-01УЗ  | КП4-9-СК-01У3  |
| КП2-10-СК-01У3 | КПЗ-10-СК-01УЗ | КП4-10-СК-01У3 |
| КП2-11-СК-01У3 | КПЗ-11-СК-01УЗ | КП4-11-СК-01У3 |
| КП2-12-СК-01У3 | КПЗ-12-СК-01УЗ | КП4-12-СК-01У3 |
|                |                |                |



#### Условные обозначения

- 01 теплоноситель пар
- климатическое исполнение изделий (эксплуатация изделий в районе с умеренным и холодным климатом)
- категория размещения изделия (для эксплуатации в закрытых помещениях с естественной вентиляцией без искусственно регулируемых климатических условий)



#### Назначение

Воздухонагреватели (калориферы) с теплоносителем пар предназначены для нагрева воздуха в системах отопления, вентиляции и кондиционирования воздуха. Воздух должен быть с предельно допустимым содержанием химически агрессивных веществ по ГОСТ 12.1.005-76 с запыленностью не более 0,5 мг/м $^{3}$  и не содержать липких веществ и волокнистых

Калориферы предназначены для эксплуатации в условиях умеренного и холодного климата категории размещения 3 по ГОСТ 15150-69. КП изготавливаются с профильным щитком повышенной жесткости для удобства монтажа.

### 🥸 Технические характеристики

Технические характеристики в 51, 52, 53 таблицах приведены для режима:

- температура воздуха на входе минус 20°С;
- давление пара на входе 0,1 МПа;
- массовая скорость в набегающем потоке 3,6 кг/м<sup>2</sup>с.

Теплоноситель - сухой насыщенный (или перегретый) пар с параметрами:

- рабочее давление не более -1,2 МПа;
- температура не более 190°C;
- скорость теплоносителя в трубах 0,32±0,016 м/с.

#### Показатели надежности:

- средний срок службы, лет, не менее 6;
- полный установленный ресурс, ч, не менее 9600;
- установленная безотказная наработка, ч, не менее -1500;
- среднее время восстановления работоспособного состояния, ч, не более - 12.



#### Внимание

Воздухонагреватели КПСК полностью замещают по основным характеристикам аналоги ВНП 113.

Пример: КП 4-5-СК-01 соответствует ВНП 113-405-01.

#### Технические характеристики

Таб. 37. Технические характеристики 2-х рядных воздухонагревателей типа КП-2.

|                                        | Значение параметра |                   |                   |                   |                   |                   |                   |                   |                   |                    |                    |                    |  |  |
|----------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--|--|
| Наименование параметра                 | КП 2-1<br>СК-01У3  | КП 2-2<br>СК-01У3 | КП 2-3<br>СК-01У3 | КП 2-4<br>СК-01У3 | КП 2-5<br>СК-01У3 | КП 2-6<br>СК-01У3 | КП 2-7<br>СК-01У3 | КП 2-8<br>СК-01У3 | КП 2-9<br>СК-01У3 | КП 2-10<br>СК-01У3 | КП 2-11<br>СК-01У3 | КП 2-12<br>СК-01У3 |  |  |
| Производительность по<br>воздуху, м³/ч | 2000               | 2500              | 3150              | 4000              | 5000              | 2500              | 3150              | 4000              | 5000              | 6300               | 16000              | 25000              |  |  |
| Производительность по<br>теплу, кВт    | 28,3               | 36,5              | 46,3              | 58,1              | 76,7              | 42,5              | 54,9              | 67,2              | 81,0              | 106,7              | 280,0              | 432,0              |  |  |
| Площадь поверхности<br>теплообмена, м² | 6,7                | 8,3               | 9,9               | 11,5              | 14,8              | 9,0               | 11,2              | 13,4              | 15,6              | 20,0               | 58,7               | 88,7               |  |  |
| Площадь фронтального<br>сечения, м²    | 0,197              | 0,244             | 0,290             | 0,337             | 0,430             | 0,267             | 0,329             | 0,392             | 0,455             | 0,581              | 1,66               | 2,488              |  |  |
| Площадь живого сечения, м²             | 0,00247            | 0,00247           | 0,00247           | 0,00247           | 0,00247           | 0,00334           | 0,00334           | 0,00334           | 0,00334           | 0,00334            | 0,00683            | 0,01031            |  |  |
| Число ходов по тепло-<br>носителю      | 1                  | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                  | 1                  | 1                  |  |  |
| Масса, кг, не более                    | 21                 | 24                | 27                | 30                | 36                | 27                | 31                | 35                | 38                | 46                 | 126                | 184                |  |  |



Таб. 38. Технические характеристики 3-х рядных воздухонагревателей типа КП-3.

|                                        | Значение параметра |                   |                   |                   |                   |                   |                   |                   |                   |                    |                    |                    |
|----------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|
| Наименование параметра                 | КП 3-1<br>СК-01У3  | КП 3-2<br>СК-01У3 | КП 3-3<br>СК-01У3 | КП 3-4<br>СК-01У3 | КП 3-5<br>СК-01У3 | КП 3-6<br>СК-01У3 | КП 3-7<br>СК-01У3 | КП 3-8<br>СК-01У3 | КП 3-9<br>СК-01У3 | КП 3-10<br>СК-01У3 | КП 3-11<br>СК-01У3 | КП 3-12<br>СК-01У3 |
| Производительность по<br>воздуху, м³/ч | 2000               | 2500              | 3150              | 4000              | 5000              | 2500              | 3150              | 4000              | 5000              | 6300               | 16000              | 25000              |
| Производительность по теплу, кВт       | 46,1               | 56,5              | 68,8              | 83,2              | 103,5             | 59,4              | 73,4              | 90,0              | 107,5             | 134,5              | 358,3              | 552,1              |
| Площадь поверхности<br>теплообмена, м² | 10,2               | 12,7              | 15,2              | 17,6              | 22,6              | 13,4              | 16,6              | 20,0              | 23,2              | ,269               | 86,3               | 130,1              |
| Площадь фронтального<br>сечения, м²    | 0,197              | 0,244             | 0,290             | 0,337             | 0,430             | 0,267             | 0,329             | 0,392             | 0,455             | 0,581              | 1,66               | 2,488              |
| Площадь живого сечения, м²             | 0,00378            | 0,00378           | 0,00378           | 0,00378           | 0,00378           | 0,00508           | 0,00508           | 0,00508           | 0,00508           | 0,00508            | 0,01031            | 0,01554            |
| Число ходов по тепло-<br>носителю      | 1                  | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                  | 1                  | 1                  |
| Масса, кг, не более                    | 28                 | 32                | 36                | 41                | 50                | 35                | 40                | 45                | 50                | 60                 | 155                | 230                |

Таб. 39. Технические характеристики 4-х рядных воздухонагревателей типа КП-4.

|                                        |                   | Значение параметра |                   |                   |                   |                   |                   |                   |                   |                    |                    |                    |  |  |
|----------------------------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--|--|
|                                        | КП 4-1<br>СК-01У3 | КП 4-2<br>СК-01У3  | КП 4-3<br>СК-01У3 | КП 4-4<br>СК-01У3 | КП 4-5<br>СК-01У3 | КП 4-6<br>СК-01У3 | КП 4-7<br>СК-01У3 | КП 4-8<br>СК-01У3 | КП 4-9<br>СК-01У3 | КП 4-10<br>СК-01У3 | КП 4-11<br>СК-01У3 | КП 4-12<br>СК-01У3 |  |  |
| Производительность по<br>воздуху, м³/ч | 2000              | 2500               | 3150              | 4000              | 5000              | 2500              | 3150              | 4000              | 5000              | 6300               | 16000              | 25000              |  |  |
| Производительность по<br>теплу, кВт    | 52,8              | 67,9               | 79,9              | 97,7              | 122,1             | 68,0              | 84,5              | 105,2             | 126,3             | 158,5              | 424,0              | 656,1              |  |  |
| Площадь поверхности<br>теплообмена, м² | 13,4              | 16,6               | 19,8              | 23,0              | 29,5              | 17,6              | 21,8              | 26,2              | 30,4              | 39,0               | 114,2              | 172,5              |  |  |
| Площадь фронтального<br>сечения, м²    | 0,197             | 0,244              | 0,290             | 0,337             | 0,430             | 0,267             | 0,329             | 0,392             | 0,455             | 0,581              | 1,66               | 2,488              |  |  |
| Площадь живого сечения, м²             | 0,00494           | 0,00494            | 0,00494           | 0,00494           | 0,00494           | 0,00688           | 0,00688           | 0,00688           | 0,00688           | 0,00688            | 0,01366            | 0,02063            |  |  |
| Число ходов по тепло-<br>носителю      | 1                 | 1                  | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                  | 1                  | 1                  |  |  |
| Масса, кг, не более                    | 31                | 36                 | 41                | 46                | 56                | 40                | 45                | 50                | 60                | 75                 | 200                | 290                |  |  |

#### Габаритные и присоединительные размеры

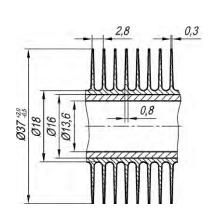



Рис. 22. Оребрение элемента теплоотдающего.

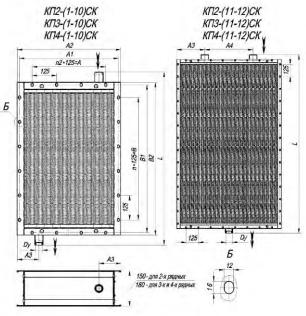
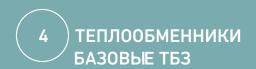




Рис. 23. Габаритные и присоединительные размеры воздухонагревателей КП.

Таб. 40. Габаритные и присоединительные размеры воздухонагревателей КП.

|                   | Значение параметра                  |                                     |                                     |                                     |                                     |                                     |                                     |           |                                     |                                        |            |            |  |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------|-------------------------------------|----------------------------------------|------------|------------|--|
| Размеры,<br>мм    | КП 2-1-СК<br>КП 3-1-СК<br>КП 4-1-СК | КП 2-2-СК<br>КП 3-2-СК<br>КП 4-2-СК | КП 2-3-СК<br>КП 3-3-СК<br>КП 4-3-СК | КП 2-4-СК<br>КП 3-4-СК<br>КП 4-4-СК | КП 2-5-СК<br>КП 3-5-СК<br>КП 4-5-СК | КП 2-6-СК<br>КП 3-6-СК<br>КП 4-6-СК | КП 2-7-СК<br>КП 3-7-СК<br>КП 4-7-СК | КП 3-8-СК | КП 2-9-СК<br>КП 3-9-СК<br>КП 4-9-СК | КП 2-10-СК<br>КП 3-10-СК<br>КП 4-10-СК | КП 3-11-СК | КП 3-12-СК |  |
| Α                 | 250                                 | 250                                 | 250                                 | 250                                 | 250                                 | 375                                 | 375                                 | 375       | 375                                 | 375                                    | 875        | 1375       |  |
| A1± 3             | 426                                 | 426                                 | 426                                 | 426                                 | 426                                 | 551                                 | 551                                 | 551       | 551                                 | 551                                    | 1051       | 1551       |  |
| A2                | 450                                 | 450                                 | 450                                 | 450                                 | 450                                 | 575                                 | 575                                 | 575       | 575                                 | 575                                    | 1075       | 1575       |  |
| А3                | 82,5                                | 82,5                                | 82,5                                | 82,5                                | 82,5                                | 82,5                                | 82,5                                | 82,5      | 82,5                                | 82,5                                   | 290        | 415        |  |
| A4                | -                                   | -                                   | -                                   | -                                   | -                                   | -                                   | -                                   | -         | -                                   | -                                      | 495        | 745        |  |
| В                 | 500                                 | 625                                 | 750                                 | 875                                 | 1125                                | 500                                 | 625                                 | 750       | 875                                 | 1125                                   | 1625       | 1625       |  |
| B1±3              | 578                                 | 703                                 | 828                                 | 953                                 | 1203                                | 578                                 | 703                                 | 828       | 953                                 | 1203                                   | 1703       | 1703       |  |
| B2                | 602                                 | 727                                 | 852                                 | 977                                 | 1227                                | 602                                 | 727                                 | 852       | 977                                 | 1227                                   | 1727       | 1727       |  |
| L                 | 700                                 | 825                                 | 950                                 | 1075                                | 1325                                | 700                                 | 825                                 | 950       | 1075                                | 1325                                   | 1825       | 1825       |  |
| Dy                | 50                                  | 50                                  | 50                                  | 50                                  | 50                                  | 50                                  | 50                                  | 50        | 50                                  | 50                                     | 65         | 80         |  |
| n                 | 4                                   | 5                                   | 6                                   | 7                                   | 9                                   | 4                                   | 5                                   | 6         | 7                                   | 9                                      | 13         | 13         |  |
| n2                | 2                                   | 2                                   | 2                                   | 2                                   | 2                                   | 3                                   | 3                                   | 3         | 3                                   | 3                                      | 7          | 11         |  |
| V, м <sup>3</sup> | 0,057                               | 0,067                               | 0,077                               | 0,122                               | 0,107                               | 0,072                               | 0,080                               | 0930,     | 0,106                               | 0,132                                  | 0,343      | 0,503      |  |









#### Условные обозначения

#### Пример обозначения теплообменника:

ТБ3-10.15.02.22 УЗ, где

ТБЗ - теплообменник базовый;

10 - число рядов труб;

15 - типоразмер калорифера по высоте;

02 - типоразмер калорифера по длине;

**22** (16) - диаметр несущей трубы.



#### Назначение

Теплообменники базовые (далее по тексту - теплообменники) предназначены для комплектации центральных кондиционеров КТЦЗ производительностью по воздуху от 10000 до 250000 м3/ч.

Теплоноситель - горячая (перегретая) вода по ГОСТ 20955-75 температурой не более 190°С и давлением не более 1,2 МПа.

| ТБ3-10.10.01.22У3  | ТБ3-10.10.01.16У3 |
|--------------------|-------------------|
| TE3-10.10.02.22 Y3 | TE3-10.10.02.16Y3 |
|                    |                   |
| ТБ3-10.12.01.22У3  | ТБ3-10.12.01.16У3 |
| ТБ3-10.12.02.22 УЗ | ТБ3-10.12.02.16У3 |
| ТБ3-10.15.02.22 УЗ | ТБ3-10.15.02.16У3 |
| ТБ3-10.20.02.22 УЗ | ТБЗ-15.10.01.16УЗ |
| ТБЗ-15.10.01.22 УЗ | ТБЗ-15.10.02.16УЗ |
| ТБ3-15.10.02.22 УЗ | ТБ3-15.12.01.16У3 |
| ТБ3-15.12.01.22 УЗ | ТБЗ-15.12.02.16УЗ |
| ТБ3-15.12.02.22 УЗ | ТБЗ-15.15.02.16УЗ |
| ТБ3-15.15.02.22 УЗ | ТБ3-20.10.01.16У3 |
| ТБ3-15.20.02.22 УЗ | ТБ3-20.10.02.16У3 |
| ТБ3-20.10.01.22У3  | ТБ3-20.12.01.16У3 |
| ТБЗ-20.10.02.22 УЗ | ТБ3-20.12.02.16У3 |
| ТБ3-20.12.01.22У3  | ТБ3-20.15.02.16У3 |
| ТБЗ-20.12.02.22 УЗ |                   |
| ТБЗ-20.15.02.22 УЗ |                   |



ТБ3-20.20.02.22 УЗ

#### 🔅 Устройство и принцип работы

Теплообменники состоят из теплоотдающих элементов, трубных решеток, крышек с патрубками, на которые присоединены фланцы для отвода-подвода теплоносителя.

Теплообменники выполнены в многоходовом исполнении, последовательность движения теплоносителя осуществляется за счет перегородок в крышке. Присоединение к системе теплоснабжения при помощи фланцев. Схема движения теплообменивающих сред перекрестно-точная.

### Технические характеристики. Габаритные и присоединительные размеры

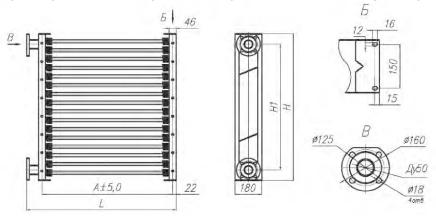



Рис. 24. Габаритные и присоединительные размеры ТБЗ-.....22.

Таб. 41. Технические характеристики. Габаритные и присоединительные размеры ТБЗ-.......22.

|                              |                                                                  |                                                        |                                                            |                                                                                  | Наимен                             | ование пара | метра |      |      |                           |       |  |
|------------------------------|------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|-------------|-------|------|------|---------------------------|-------|--|
|                              |                                                                  | Площадь                                                |                                                            | Площадь<br>сечения                                                               | Число                              | Размеры, мм |       |      |      |                           |       |  |
| Типоразмер<br>теплообменника | Произ-<br>водитель-<br>ность по<br>воздуху,<br>м <sup>3</sup> /ч | поверх-<br>ности<br>тепло<br>обмена,<br>м <sup>2</sup> | Площадь<br>фронталь-<br>ного<br>сечения,<br>м <sup>2</sup> | (среднее<br>значение)<br>для<br>прохода<br>тепло-<br>носителя,<br>м <sup>2</sup> | ходов<br>по<br>тепло -<br>носителю | А           | L     | н    | H1   | Масса,<br>кг,<br>не более | V,³ м |  |
| ТБЗ-10.10.01.22 УЗ           |                                                                  | 14,7                                                   | 0,826                                                      | 0,00163                                                                          | 4                                  | 876         | 1000  | 997  | 861  | 68                        | 0,155 |  |
| ТБЗ-10.10.02.22 УЗ           |                                                                  | 29,7                                                   | 1,65                                                       | 0,00163                                                                          | 4                                  | 1703        | 1827  | 997  | 861  | 103                       | 0,283 |  |
| ТБЗ-10.12.01.22 УЗ           |                                                                  | 18,5                                                   | 1,03                                                       | 0,00137                                                                          | 6                                  | 876         | 1000  | 1247 | 1109 | 84                        | 0,200 |  |
| ТБЗ-10.12.02.22 УЗ           |                                                                  | 37,4                                                   | 2,06                                                       | 0,00137                                                                          | 6                                  | 1703        | 1827  | 1247 | 1109 | 128                       | 0,365 |  |
| ТБЗ-10.15.02.22 УЗ           |                                                                  | 45,1                                                   | 2,48                                                       | 0,00165                                                                          | 6                                  | 1703        | 1827  | 1497 | 1365 | 153                       | 0,449 |  |
| ТБЗ-10.20.02.22 УЗ           |                                                                  | 60,5                                                   | 3,31                                                       | 0,00166                                                                          | 8                                  | 1703        | 1827  | 1997 | 1869 | 202                       | 0,615 |  |
| ТБЗ-15.10.01.22 УЗ           |                                                                  | 21,1                                                   | 0,826                                                      | 0,00234                                                                          | 4                                  | 876         | 1000  | 997  | 861  | 84                        | 0,155 |  |
| ТБЗ-15.10.02.22 УЗ           |                                                                  | 42,5                                                   | 1,65                                                       | 0,00234                                                                          | 4                                  | 1703        | 1827  | 997  | 861  | 135                       | 0,283 |  |
| ТБЗ-15.12.01.22 УЗ           | от 10000                                                         | 27,3                                                   | 1,03                                                       | 0,00203                                                                          | 6                                  | 876         | 1000  | 1247 | 1109 | 107                       | 0,200 |  |
| ТБЗ-15.12.02.22 УЗ           | до 250000                                                        | 55,4                                                   | 2,06                                                       | 0,00203                                                                          | 6                                  | 1703        | 1827  | 1247 | 1109 | 172                       | 0,365 |  |
| ТБЗ-15.15.02.22 УЗ           | ,,,                                                              | 65,6                                                   | 2,48                                                       | 0,00241                                                                          | 6                                  | 1703        | 1827  | 1497 | 1365 | 204                       | 0,449 |  |
| ТБЗ-15.20.02.22 УЗ           |                                                                  | 88,8                                                   | 3,31                                                       | 0,00244                                                                          | 8                                  | 1703        | 1827  | 1997 | 1869 | 271                       | 0,615 |  |
| ТБЗ-20.10.01.22 УЗ           |                                                                  | 29,2                                                   | 0,826                                                      | 0,00326                                                                          | 4                                  | 876         | 1000  | 997  | 861  | 103                       | 0,155 |  |
| ТБЗ-20.10.02.22 УЗ           |                                                                  | 59,3                                                   | 1,65                                                       | 0,00326                                                                          | 4                                  | 1703        | 1827  | 997  | 861  | 172                       | 0,283 |  |
| ТБЗ-20.12.01.22 УЗ           |                                                                  | 36,9                                                   | 1,03                                                       | 0,00274                                                                          | 6                                  | 876         | 1000  | 1247 | 1109 | 128                       | 0,200 |  |
| ТБЗ-20.12.02.22 УЗ           |                                                                  | 74,7                                                   | 2,06                                                       | 0,00274                                                                          | 6                                  | 1703        | 1827  | 1247 | 1109 | 215                       | 0,365 |  |
| ТБ3-20.15.02.22 У3           |                                                                  | 90,1                                                   | 2,48                                                       | 0,00331                                                                          | 6                                  | 1703        | 1827  | 1497 | 1365 | 258                       | 0,449 |  |
| ТБЗ-20.20.02.22 УЗ           |                                                                  | 120,9                                                  | 3,31                                                       | 0,00331                                                                          | 8                                  | 1703        | 1827  | 1997 | 1869 | 344                       | 0,615 |  |

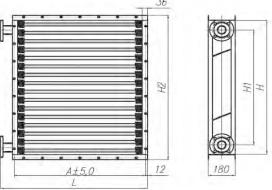
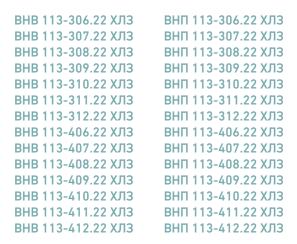



Рис. 25. Габаритные и присоединительные размеры ТБЗ-.....16.

Таб. 42. Технические характеристики. Габаритные и присоединительные размеры ТБЗ-......16.

|                              |                                                                  |                                                         |                                                 |                                                                                  | Наимен                                      | ование па   | раметра |      |      |      |                           |       |  |
|------------------------------|------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|-------------|---------|------|------|------|---------------------------|-------|--|
|                              | Произ-                                                           | Площадь                                                 | Площадь                                         | Площадь<br>сечения                                                               |                                             | Размеры, мм |         |      |      |      |                           |       |  |
| Типоразмер<br>теплообменника | произ-<br>водитель-<br>ность по<br>воздуху,<br>м <sup>3</sup> /ч | поверх-<br>ности<br>тепло-<br>обмена,<br>м <sup>2</sup> | фронталь-<br>ного<br>сечения,<br>м <sup>2</sup> | (среднее<br>значение)<br>для<br>прохода<br>тепло-<br>носителя,<br>м <sup>2</sup> | Число<br>ходов<br>по<br>тепло -<br>носителю | A           | L       | н    | H1   | H2   | Масса,<br>кг,<br>не более | V,³ м |  |
| ТБЗ-10.10.01.16 УЗ           |                                                                  | 14,4                                                    | 0,83                                            | 0,000531                                                                         | 4                                           | 876         | 980     | 997  | 869  | 1075 | 65                        | 0,190 |  |
| ТБЗ-10.10.02.16 УЗ           |                                                                  | 29,1                                                    | 1,65                                            | 0,000796                                                                         | 4                                           | 1703        | 1807    | 997  | 869  | 1075 | 95                        | 0,350 |  |
| ТБЗ-10.12.01.16 УЗ           |                                                                  | 18,1                                                    | 1,03                                            | 0,000663                                                                         | 6                                           | 876         | 980     | 1247 | 1119 | 1325 | 76                        | 0,234 |  |
| ТБЗ-10.12.02.16 УЗ           |                                                                  | 36,4                                                    | 2,06                                            | 0,000995                                                                         | 6                                           | 1703        | 1807    | 1247 | 1119 | 1325 | 112                       | 0,431 |  |
| ТБЗ-10.15.02.16 УЗ           |                                                                  | 43,7                                                    | 2,48                                            | 0,000119                                                                         | 6                                           | 1703        | 1807    | 1497 | 1369 | 1575 | 127                       | 0,512 |  |
| ТБЗ-15.10.01.16 УЗ           |                                                                  | 23,5                                                    | 0,83                                            | 0,000862                                                                         | 4                                           | 876         | 980     | 997  | 869  | 1075 | 80                        | 0,190 |  |
| ТБЗ-15.10.02.16 УЗ           | от 10000                                                         | 47,3                                                    | 1,65                                            | 0,00129                                                                          | 4                                           | 1703        | 1807    | 997  | 869  | 1075 | 118                       | 0,350 |  |
| ТБЗ-15.12.01.16 УЗ           | до 250000                                                        | 29,5                                                    | 1,03                                            | 0,00108                                                                          | 6                                           | 876         | 980     | 1247 | 1119 | 1325 | 93                        | 0,234 |  |
| ТБЗ-15.12.02.16 УЗ           |                                                                  | 59,5                                                    | 2,06                                            | 0,00163                                                                          | 6                                           | 1703        | 1807    | 1247 | 1119 | 1325 | 140                       | 0,431 |  |
| ТБЗ-15.15.02.16 УЗ           |                                                                  | 71,6                                                    | 2,48                                            | 0,00196                                                                          | 6                                           | 1703        | 1807    | 1497 | 1369 | 1575 | 163                       | 0,512 |  |
| ТБЗ-20.10.01.16 УЗ           |                                                                  | 28,3                                                    | 0,83                                            | 0,00104                                                                          | 4                                           | 876         | 1000    | 997  | 869  | 1075 | 86                        | 0,194 |  |
| ТБЗ-20.10.02.16 УЗ           |                                                                  | 57,1                                                    | 1,65                                            | 0,00156                                                                          | 4                                           | 1703        | 1827    | 997  | 869  | 1075 | 132                       | 0,354 |  |
| ТБЗ-20.12.01.16 УЗ           |                                                                  | 35,5                                                    | 1,03                                            | 0,00131                                                                          | 6                                           | 876         | 1000    | 1247 | 1119 | 1325 | 105                       | 0,239 |  |
| ТБЗ-20.12.02.16 УЗ           |                                                                  | 71,6                                                    | 2,06                                            | 0,00196                                                                          | 6                                           | 1703        | 1827    | 1247 | 1119 | 1325 | 158                       | 0,436 |  |
| ТБЗ-20.15.02.16 УЗ           |                                                                  | 86,2                                                    | 2,48                                            | 0,00236                                                                          | 6                                           | 1703        | 1827    | 1497 | 1369 | 1575 | 194                       | 0,518 |  |








Технические характеристики, указанные в таблице, приведены для режима:

температура воздуха на входе: - минус  $45\,^{\circ}$ С температура воды на входе: +150  $^{\circ}$ С температура воды на выходе: +70  $^{\circ}$ С



### √ Назначение

Воздухонагреватели предназначены для нагрева воздуха в системах отопления, вентиляции, кондиционирования воздуха, создания нормальных санитарно-гигиенических условий на рабочих местах промышленных цехов, проветривания горных выработок на предприятиях горнодобывающей и металлургической промышленности, в условиях холодного климата «ХЛ», категории размещения 3 по ГОСТ 15150-69.

Теплоотдающий элемент — биметаллический на стальной электросварной несущей трубе Ø22x1,5 мм с алюминиевым накатным оребрением номинальным диаметром 41 мм, шаг между ребрами 3,4 мм.

По сравнению с калориферами КСк и воздухонагревателями КПСк данное оборудование обладает рядом преимуществ:

- меньшее гидравлическое сопротивление;
- при большем внутреннем диаметре трубы теплоотдающих элементов уменьшается возможность зарастания накипью и грязью внутренних полостей и полного перекрытия внутреннего сечения при загрязненном теплоносителе, что способствует более длительному сроку сохранения стабильных теплотехнических характеристик.

#### Технические характеристики

Таб. 43. Технические характеристики 3-х рядных воздухонагревателей типа ВНВ.

|                                                                                     |                      |                      | 3                    | Значение параметра   |                      |                      |                      |  |  |
|-------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|
| Наименование параметра                                                              | ВНВ113-<br>306.22XЛ3 | ВНВ113-<br>307.22ХЛ3 | ВНВ113-<br>308.22XЛ3 | ВНВ113-<br>309.22ХЛ3 | ВНВ113-<br>310.22XЛ3 | ВНВ113-<br>311.22XЛ3 | ВНВ113-<br>312.22XЛ3 |  |  |
| Производительность<br>по воздуху, м³/ч                                              | 2500                 | 3150                 | 4000                 | 5000                 | 6300                 | 16000                | 25000                |  |  |
| Производительность<br>по теплу, кВт                                                 | 55,3                 | 70,7                 | 83,0                 | 103,1                | 135,2                | 360,0                | 556,4                |  |  |
| Площадь поверхности<br>теплообмена, м²                                              | 9,9                  | 12,3                 | 20,0                 | 23,2                 | 29,6                 | 86,3                 | 130,1                |  |  |
| Площадь фронтального<br>сечения, м²                                                 | 0,267                | 0,329                | 0,392                | 0,455                | 0,581                | 1,660                | 2,448                |  |  |
| Площадь сечения (среднее<br>значение для перехода<br>теплоносителя), м <sup>2</sup> | 0,000907             | 0,00127              | 0,00127              | 0,00127              | 0,00127              | 0,00258              | 0,00389              |  |  |
| Масса, кг, не более                                                                 | 35                   | 40                   | 45                   | 50                   | 60                   | 155                  | 230                  |  |  |

Таб. 44. Технические характеристики 4-х рядных воздухонагревателей типа ВНВ.

|                                                                         | Значение параметра   |                      |                      |                      |                      |                      |                      |  |  |  |  |
|-------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|--|
| Наименование параметра                                                  | ВНВ113-<br>406.22XЛ3 | ВНВ113-<br>407.22XЛ3 | ВНВ113-<br>408.22XЛ3 | ВНВ113-<br>409.22XЛ3 | ВНВ113-<br>410.22XЛ3 | ВНВ113-<br>411.22XЛ3 | ВНВ113-<br>412.22XЛ3 |  |  |  |  |
| Производительность<br>по воздуху, м <sup>3</sup> /ч                     | 2500                 | 3150                 | 4000                 | 5000                 | 6300                 | 16000                | 25000                |  |  |  |  |
| Производительность<br>по теплу, кВт                                     | 59,0                 | 76,0                 | 97,0                 | 120,4                | 157,2                | 417,3                | 648,1                |  |  |  |  |
| Площадь поверхности<br>теплообмена, м²                                  | 17,6                 | 21,8                 | 26,2                 | 30,4                 | 39,0                 | 114,2                | 172,5                |  |  |  |  |
| Площадь фронтального<br>сечения, м²                                     | 0,267                | 0,329                | 0,392                | 0,455                | 0,581                | 1,660                | 2,448                |  |  |  |  |
| Площадь сечения (среднее<br>значение для перехода<br>теплоносителя), м² | 0,00167              | 0,00167              | 0,00167              | 0,00167              | 0,00167              | 0,00341              | 0,00516              |  |  |  |  |
| Масса, кг, не более                                                     | 40                   | 45                   | 50                   | 60                   | 75                   | 200                  | 290                  |  |  |  |  |

Таб. 45. Технические характеристики 3-х рядных воздухонагревателей типа ВНП.

|                                                                                     | Значение параметра   |                      |                      |                      |                      |                      |                      |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|--|
| Наименование параметра                                                              | ВНП113-<br>306.22XЛ3 | ВНП113-<br>307.22XЛ3 | ВНП113-<br>308.22XЛ3 | ВНП113-<br>309.22XЛ3 | ВНП113-<br>310.22XЛ3 | ВНП113-<br>311.22XЛ3 | ВНП113-<br>312.22XЛ3 |  |  |  |  |
| Производительность<br>по воздуху, м³/ч                                              | 2500                 | 3150                 | 4000                 | 5000                 | 6300                 | 16000                | 25000                |  |  |  |  |
| Производительность<br>по теплу, кВт                                                 | 55,3                 | 70,7                 | 89,3                 | 111,1                | 142,9                | 384,9                | 598,5                |  |  |  |  |
| Площадь поверхности<br>теплообмена, м²                                              | 9,9                  | 12,3                 | 14,6                 | 17,0                 | 21,8                 | 63,7                 | 96,1                 |  |  |  |  |
| Площадь фронтального<br>сечения, м²                                                 | 0,267                | 0,329                | 0,392                | 0,455                | 0,581                | 1,660                | 2,448                |  |  |  |  |
| Площадь сечения (среднее<br>значение для перехода<br>теплоносителя), м <sup>2</sup> | 0,00907              | 0,00907              | 0,00907              | 0,00907              | 0,00907              | 0,01843              | 0,02779              |  |  |  |  |
| Масса, кг, не более                                                                 | 44                   | 50                   | 58                   | 65                   | 80                   | 206                  | 299                  |  |  |  |  |

Таб. 46. Технические характеристики 4-х рядных воздухонагревателей типа ВНП.

|                                                                         |                      | Значение параметра   |                      |                      |                      |                      |                      |  |  |  |  |  |
|-------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|--|--|
| Наименование параметра                                                  | ВНП113-<br>406.22XЛ3 | ВНП113-<br>407.22ХЛ3 | ВНП113-<br>408.22XЛ3 | ВНП113-<br>409.22XЛ3 | ВНП113-<br>410.22XЛ3 | ВНП113-<br>411.22XЛ3 | ВНП113-<br>412.22XЛ3 |  |  |  |  |  |
| Производительность<br>по воздуху, м³/ч                                  | 2500                 | 3150                 | 4000                 | 5000                 | 6300                 | 16000                | 25000                |  |  |  |  |  |
| Производительность<br>по теплу, кВт                                     | 63,2                 | 79,7                 | 100,4                | 124,5                | 158,7                | 425,4                | 661,5                |  |  |  |  |  |
| Площадь поверхности<br>теплообмена, м²                                  | 13,0                 | 16,1                 | 19,2                 | 22,4                 | 28,6                 | 84,3                 | 127,4                |  |  |  |  |  |
| Площадь фронтального<br>сечения, м²                                     | 0,267                | 0,329                | 0,392                | 0,455                | 0,581                | 1,660                | 2,448                |  |  |  |  |  |
| Площадь сечения (среднее<br>значение для перехода<br>теплоносителя), м² | 0,01191              | 0,01191              | 0,01191              | 0,01191              | 0,01191              | 0,02438              | 0,03686              |  |  |  |  |  |
| Масса, кг, не более                                                     | 56                   | 65                   | 74                   | 83                   | 101                  | 272                  | 397                  |  |  |  |  |  |



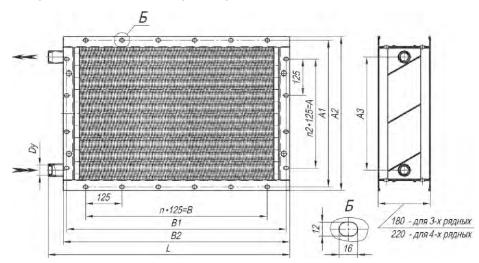



Рис. 26. Габаритные и присоединительные размеры воздухонагревателей типа ВНВ.

Таб. 47. Габаритные и присоединительные размеры воздухонагревателей типа ВНВ.

|                        |                                | Значение параметра             |                                |                                |                                |                                |                                |  |  |  |  |  |
|------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|--|--|--|
| Наименование параметра | BHB113-306.22<br>BHB113-406.22 | BHB113-307.22<br>BHB113-407.22 | BHB113-308.22<br>BHB113-408.22 | BHB113-309.22<br>BHB113-409.22 | BHB113-310.22<br>BHB113-410.22 | BHB113-311.22<br>BHB113-411.22 | BHB113-312.22<br>BHB113-412.22 |  |  |  |  |  |
| А                      | 375                            | 375                            | 375                            | 375                            | 375                            | 875                            | 1375                           |  |  |  |  |  |
| A1±3                   | 551                            | 551                            | 551                            | 551                            | 551                            | 1051                           | 1551                           |  |  |  |  |  |
| A2                     | 575                            | 575                            | 575                            | 575                            | 575                            | 1075                           | 1575                           |  |  |  |  |  |
| А3                     | 392                            | 392                            | 392                            | 392                            | 392                            | 892                            | 1380                           |  |  |  |  |  |
| В                      | 500                            | 625                            | 750                            | 875                            | 1125                           | 1625                           | 1625                           |  |  |  |  |  |
| B1±3                   | 578                            | 703                            | 828                            | 953                            | 1203                           | 1703                           | 1703                           |  |  |  |  |  |
| B2                     | 602                            | 727                            | 852                            | 977                            | 1227                           | 1727                           | 1727                           |  |  |  |  |  |
| L                      | 650                            | 775                            | 900                            | 1025                           | 1275                           | 1775                           | 1775                           |  |  |  |  |  |
| Dy                     | 65                             | 65                             | 65                             | 65                             | 65                             | 80                             | 80                             |  |  |  |  |  |
| n                      | 4                              | 5                              | 6                              | 7                              | 9                              | 13                             | 13                             |  |  |  |  |  |
| n2                     | 3                              | 3                              | 3                              | 3                              | 3                              | 7                              | 11                             |  |  |  |  |  |
| V, м <sup>3</sup>      | 0,067                          | 0,080                          | 0,093                          | 0,106                          | 0,132                          | 0,343                          | 0,503                          |  |  |  |  |  |

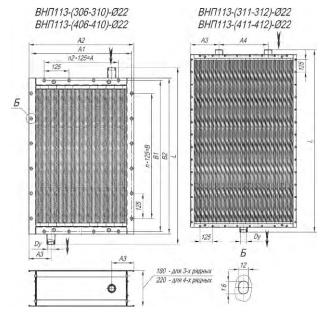



Рис. 27. Габаритные и присоединительные размеры воздухонагревателей типа ВНП.

Таб. 48. Габаритные и присоединительные размеры воздухонагревателей типа ВНП.

|                        | Значение параметра             |                                |                                |                                |                                |                                |                                |  |  |  |  |
|------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|--|--|
| Наименование параметра | ВНП113-306.22<br>ВНП113-406.22 | ВНП113-307.22<br>ВНП113-407.22 | ВНП113-308.22<br>ВНП113-408.22 | ВНП113-309.22<br>ВНП113-409.22 | ВНП113-310.22<br>ВНП113-410.22 | ВНП113-311.22<br>ВНП113-411.22 | ВНП113-312.22<br>ВНП113-412.22 |  |  |  |  |
| А                      | 375                            | 375                            | 375                            | 375                            | 375                            | 875                            | 1375                           |  |  |  |  |
| A1±3                   | 551                            | 551                            | 551                            | 551                            | 551                            | 1051                           | 1551                           |  |  |  |  |
| A2                     | 575                            | 575                            | 575                            | 575                            | 575                            | 1075                           | 1575                           |  |  |  |  |
| А3                     | 91                             | 91                             | 91                             | 91                             | 91                             | 290                            | 415                            |  |  |  |  |
| A4                     | -                              | -                              | -                              | -                              | -                              | 495                            | 745                            |  |  |  |  |
| В                      | 500                            | 625                            | 750                            | 875                            | 1125                           | 1625                           | 1625                           |  |  |  |  |
| B1±3                   | 578                            | 703                            | 828                            | 953                            | 1203                           | 1703                           | 1703                           |  |  |  |  |
| B2                     | 602                            | 727                            | 852                            | 977                            | 1227                           | 1727                           | 1727                           |  |  |  |  |
| L                      | 700                            | 825                            | 950                            | 1510                           | 1325                           | 1825                           | 1825                           |  |  |  |  |
| Dy                     | 65                             | 65                             | 65                             | 65                             | 65                             | 80                             | 80                             |  |  |  |  |
| n                      | 4                              | 5                              | 6                              | 7                              | 9                              | 13                             | 13                             |  |  |  |  |
| n2                     | 3                              | 3                              | 3                              | 3                              | 3                              | 7                              | 11                             |  |  |  |  |
| V, м <sup>3</sup>      | 0,072/0,089                    | 0,085/0,104                    | 0,098/0,120                    | 0,156/0,191                    | 0,131/0,168                    | 0,345/0,432                    | 0,517/0,632                    |  |  |  |  |

### Расшифровка маркировки воздухонагревателей ВНВ... и ВНП...

### УСЛОВНОЕ ОБОЗНАЧЕНИЕ ТИПА ВОЗДУХОНАГРЕВАТЕЛЯ:

ВНВ - воздухонагреватель водяной

ВНП - воздухонагреватель паровой

#### УСЛОВНОЕ ОБОЗНАЧЕНИЕ КОНСТРУКТИВНОГО ИСПОЛНЕНИЯ ПОВЕРХНОСТИ ТЕПЛООБМЕНА:

- 1 с трубчато-ребристой спирально-накатной поверхностью
- 2 с трубчато-ребристой спирально-навивной поверхностью
- 3 с пластинчатой поверхностью

#### УСЛОВНОЕ ОБОЗНАЧЕНИЕ МАТЕРИАЛА НЕСУЩИХ ТРУБОК:

- 1 углеродистая сталь обыкновенного качества
- 2 нержавеющая сталь
- 3 алюминий или алюминиевые сплавы
- 4 медь или медные сплавы

#### УСЛОВНОЕ ОБОЗНАЧЕНИЕ МАТЕРИАЛА ОРЕБРЕНИЯ:

- 1 углеродистая сталь обыкновенного качества
- 2 нержавеющая сталь
- 3 алюминий 4 - медь
- КОЛИЧЕСТВО РЯДОВ ТЕПЛООБМЕННЫХ ЭЛЕМЕНТОВ ПО ХОДУ ВОЗДУХА

## НОМЕР ВОЗДУХОНАГРЕВАТЕЛЯ

РЕГИСТРАЦИОННЫЙ НОМЕР [МОДИФИКАЦИЯ]

КЛИМАТИЧЕСКОЕ ИСПОЛНЕНИЕ И КАТЕГОРИЯ РАЗМЕЩЕНИЯ



BHB(II) XXX-XXX-XX-XX



# ЭЛЕКТРОКАЛОРИФЕРЫ ЭКО (АНАЛОГ СФО)



**√** Назначение

Предназначены для комплектации электрокалориферных установок серии ЭКОЦ или применения в вентиляционных системах для нагрева воздуха в зданиях сельскохозяйственного, промышленного, коммунального назначения при условии, если окружающая среда невзрывоопасная и не содержит значительного количества токопроводящей пыли.

| ЭКО-5  | ЭКО-60  |
|--------|---------|
| ЭКО-10 | ЭКО-100 |
| ЭКО-16 | ЭКО-160 |
| ЭКО-25 | ЭКО-250 |
| ЭКО-40 | ЭКО-320 |

### 🥸 Устройство и принцип работы

Электрокалорифер представляет собой каркас прямоугольного сечения, внутри которого расположены трубчатые оребренные электронагреватели: ТЭНы расположены в два, три или четыре ряда, каждый из которых представляет автономную электрическую секцию. Выводы ТЭНов размещаются в коробках, которые закрываются крышками.

Электронагреватели ТЭНов соединены в звезду для того, чтобы при подключении электрокалорифера к сети 380 В на каждом ТЭНе было 220 В. В корпусе установлены два независимых биметаллических нормально замкнутых термовыключателя с самовозвратом. Один с температурой срабатывания 70-100 °C как защита против перегрева воздушного потока, а второй с температурой срабатывания 100-130 °C для защиты от пожара при перегреве корпуса.

#### Технические характеристики

Таб. 49. Технические характеристики электрокалориферов ЭКО.

|                                                                             |       | Значение параметра |        |        |        |        |         |         |         |         |  |
|-----------------------------------------------------------------------------|-------|--------------------|--------|--------|--------|--------|---------|---------|---------|---------|--|
| Наименование параметра                                                      | ЭКО-5 | ЭКО-10             | ЭКО-16 | ЭКО-25 | ЭКО-40 | ЭКО-60 | ЭКО-100 | ЭКО-160 | ЭКО-250 | ЭКО-320 |  |
| Установленная мощность, кВт                                                 | 4,8   | 9,6                | 15,0   | 22,5   | 45,0   | 67,5   | 90,0    | 157,5   | 250,0   | 312,5   |  |
| Номинальная мощность<br>одного нагревателя, кВт                             | 1,6   | 1,6                | 2,5    | 2,5    | 2,5    | 2,5    | 2,5     | 2,5     | 2,5     | 2,5     |  |
| Число электрических секций                                                  | 1     |                    |        |        |        | 3      |         |         | 4       | 5       |  |
| Напряжение питающей сети, В                                                 |       |                    |        |        | 380    | £28,5  |         |         |         |         |  |
| Напряжение на нагревателе, В                                                |       |                    |        |        | 22     | 20     |         |         |         |         |  |
| Частота, Гц                                                                 |       |                    |        |        | 5      | 0      |         |         |         |         |  |
| Число фаз                                                                   |       |                    |        |        | ;      | 3      |         |         |         |         |  |
| Схема соединения нагревателей в секции                                      |       |                    |        |        | Зве    | зда    |         |         |         |         |  |
| Степень защиты оболочки                                                     |       |                    |        |        | lp     | 20     |         |         |         |         |  |
| Минимальный теплоперепад<br>выходящего и входящего<br>воздуха, °C, не более | 35    | 35                 | 35     | 35     | 50     | 65     | 70      | 85      | 100     | 110     |  |
| Производительность<br>по воздуху (min), м3/ч,                               | 400   | 800                | 1900   | 2500   | 3500   | 4000   | 5000    | 7500    | 10000   | 12500   |  |
| Аэродинамическое<br>сопротивление, Па, не более                             | 70    | 100                | 100    | 150    | 200    | 300    | 350     | 350     | 400     | 470     |  |
| Масса, кг, не более                                                         | 6     | 8                  | 8      | 12     | 21     | 29     | 36      | 62      | 89      | 108     |  |

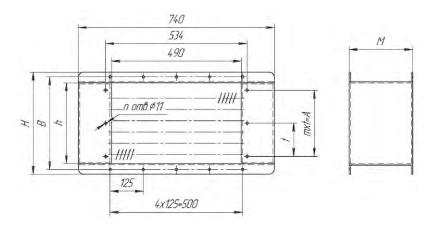



Рис. 28. Габаритные размеры электрокалориферов ЭКО.

Таб. 50. Габаритные размеры электрокалориферов ЭКО.

| Наименование | Размеры, мм |      |      |     |     |     |    |   |                   |  |  |
|--------------|-------------|------|------|-----|-----|-----|----|---|-------------------|--|--|
| продукции    | h           | В    | Н    | t   | А   | М   | n  | m | V, M <sup>3</sup> |  |  |
| ЭКО-5        | 145         | 190  | 225  | 100 | 100 | 175 | 28 | 1 | 0,028             |  |  |
| ЭКО-10       | 170         | 215  | 250  | 125 | 125 | 175 | 28 | 1 | 0,031             |  |  |
| ЭКО-16       | 170         | 215  | 250  | 125 | 125 | 175 | 28 | 1 | 0,031             |  |  |
| ЭКО-25       | 170         | 215  | 250  | 125 | 125 | 240 | 28 | 1 | 0,044             |  |  |
| ЭКО-40       | 305         | 350  | 385  | 125 | 250 | 240 | 32 | 2 | 0,068             |  |  |
| ЭКО-60       | 440         | 485  | 520  | 150 | 300 | 240 | 32 | 2 | 0,092             |  |  |
| ЭКО-100      | 575         | 620  | 655  | 150 | 450 | 240 | 32 | 3 | 0,116             |  |  |
| ЭКО-160      | 980         | 1025 | 1060 | 150 | 600 | 240 | 40 | 4 | 0,188             |  |  |
| ЭКО-250      | 1150        | 1195 | 1230 | 150 | 900 | 305 | 48 | 6 | 0,278             |  |  |
| ЭКО-320      | 1150        | 1195 | 1230 | 150 | 900 | 305 | 48 | 6 | 0,278             |  |  |





ВНЭ-15-02 УХЛ 4 ВНЭ-30-01 УХЛ 4 ВНЭ-30-02 УХЛ 4 ВНЭ-45-01 УХЛ 4 ВНЭ-45-02 УХЛ 4 ВНЭ-65-01 УХЛ 4 ВНЭ-65-02 УХЛ 4 ВНЭ-90-01 УХЛ 4



Воздухонагреватели электрические предназначены для комплектации воздухонагревательных установок серии УВНЭ, применяемых для отопления и вентиляции помещений промышленного, сельскохозяйственного, коммунального и культурного назначения, а также для других установок, взамен электрокалориферов серии СФО, а также в качестве самостоятельных изделий для воздушного отопления помешений.

Условия эксплуатации - умеренно холодный климат (УХЛ) категории размещения 4 по ГОСТ 15150-69. Окружающая среда должна быть невзрывоопасна и не должна содержать токопроводящей пыли.

Воздухонагреватели комплектуются нагревателями (ТЭН Ø13 мм) из углеродистой стали обыкновенного качества с алюми-

ниевым накатным оребрением. Применяемые на нагревательных элементах материалы не выделяют при работе вредных веществ. Корпус воздухонагревателя изготовлен из оцинкованной стали.

В составе ВНЭ есть два независимых биметаллических нормально замкнутых термовыключателя с самовозвратом. Один с температурой срабатывания 70°С как защита против перегрева воздушного потока, а второй с температурой срабатывания 100°С для защиты от пожара при перегреве корпуса.

Воздухонагреватели исполнения "01" укомплектованы нагревателями (ТЭН) мощностью 2,5 кВт, исполнения "02" - нагревателями мощностью 1,6 кВт.

#### Технические характеристики

Таб. 51. Технические характеристики воздухонагревателей электрических ВНЭ.

|                                                                 |                   |                   |                   | -                 |                   | •                 |                   |                   |
|-----------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Наименование<br>параметра                                       | ВНЭ-15-02<br>УХЛ4 | ВНЭ-30-01<br>УХЛ4 | ВНЭ-30-02<br>УХЛ4 | ВНЭ-45-01<br>УХЛ4 | ВНЭ-45-02<br>УХЛ4 | ВНЭ-65-01<br>УХЛ4 | ВНЭ-65-02<br>УХЛ4 | ВНЭ-90-01<br>УХЛ4 |
| Установленная мощность, кВт                                     | 14,4 22,5 28,8    |                   |                   | 45                | 43,2              | 67,5              | 57,6              | 90                |
| Номинальная мощность<br>одного нагревателя, кВт                 | 1,6               | 2,5               | 1,6               | 2,5               | 1,6               | 2,5               | 1,6               | 2,5               |
| Число электрических секций                                      |                   |                   |                   | ;                 | 3                 |                   |                   |                   |
| Напряжение питающей сети, В                                     |                   |                   |                   | 380 ±             | ± 28,5            |                   |                   |                   |
| Напряжение на нагревателе, В                                    |                   |                   |                   | 2:                | 20                |                   |                   |                   |
| Частота, Гц                                                     |                   | 50                |                   |                   |                   |                   |                   |                   |
| Число фаз                                                       |                   |                   |                   | ;                 | 3                 |                   |                   |                   |
| Схема соединения нагревателей в секции                          |                   |                   |                   | Зве               | зда               |                   |                   |                   |
| Степень защиты оболочки                                         |                   |                   |                   | lp                | 20                |                   |                   |                   |
| Температура выходящего воздуха, °С, не более                    |                   |                   |                   | 7                 | 0                 |                   |                   |                   |
| Производительность по воздуху,<br>м³/ч, минимальная             | 2000              | 2!                | 500               | 30                | 00                | 40                | 00                | 7500              |
| Перепад температур входящего и выходящего воздуха, °C, не более | 28                | 38                | 49                | 51                | 49                | 59                | 49                | 51                |
| Аэродинамическое<br>сопротивление, Па, не более                 | 115               | 145               | 60                | 105               | 60                | 90                | 65                | 115               |
| Масса, кг, не более                                             | 12 21 28 36       |                   |                   |                   |                   |                   |                   | 6                 |




Рис. 29. Габаритные и присоединительные размеры воздухонагревателей электрических ВНЭ.

Таб. 52. Габаритные и присоединительные размеры воздухонагревателей электрических ВНЭ.

| Наименование                         |     |     | Размер,мм | _   |     | V,м <sup>3</sup> |   |       |  |
|--------------------------------------|-----|-----|-----------|-----|-----|------------------|---|-------|--|
| продукции                            | h   | В   | Н         | t   | А   | n                | m | V ,M  |  |
| ВНЭ - 15-02 УХЛ4<br>ВНЭ - 30-01 УХЛ4 | 170 | 215 | 250       | 125 | 125 | 125              | 1 | 0,044 |  |
| ВНЭ - 30-02 УХЛ4<br>ВНЭ - 45-01 УХЛ4 | 305 | 350 | 385       | 125 | 250 | 250              |   | 0,068 |  |
| ВНЭ - 45-02 УХЛ4<br>ВНЭ - 65-01 УХЛ4 | 440 | 485 | 520       | 150 | 300 | 300              | 2 | 0,092 |  |
| ВНЭ - 65-02 УХЛ4<br>ВНЭ - 90-01 УХЛ4 | 575 | 620 | 655       | 150 | 450 | 450              | 3 | 0,116 |  |



### Замена агрегатов воздушного отопления

Агрегаты отопительные AO полностью замещают по основным характеристикам аналоги AB, AП, AПВ, AПВС, ABO, а также аналогичное оборудование ABO.

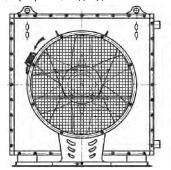
Таб. 53. Аналоги агрегатов воздушного отопления АО.

|     |        |        | 3   | Заменяемые аналогі | И          |            |            |
|-----|--------|--------|-----|--------------------|------------|------------|------------|
| A02 | АВАП   | АПВС   | стд | AB0                | ΓΕΑ SANARA | CI AT 2000 | ВОЛЬФ WD-A |
| 3   | 3-35   |        |     | 52 BX              | 4          | 2352       | 220        |
|     | 3-35   | 50-30  |     | 53 BX              | 4          | 2353       | 230        |
| 4   | 3-40   | 50-30  |     | 54 BX              | 4          | 2402       | 240        |
|     | 5-50   | 70-40  |     | 62 BX              | 6          | 2403       | 320        |
|     | 5-50   | 70-40  |     | 63 BX              | 6          | 2452       | 330        |
| 6,3 | 5-50   | 70-40  |     | 64 BX              | 6          | 2453       | 340        |
|     | 10-75  | 70-40  |     | 72 BX              | 6          | 2501       | 420        |
|     | 10-75  | 70-40  |     | 73 BX              | 6          | 2502       | 430        |
| 10  | 10-100 | 110-80 | 100 | 74 BX              | 6          | 2503       | 440        |
| 10  | 10-100 | 110-80 |     | 82 BX              | 6          | 2651       | 420        |
|     | 10-100 | 110-80 | 100 | 83 BX              | 6          | 2652       | 430        |
|     | 10-100 | 110-80 | 100 | 84 BX              | 6          | 2653       | 440        |
|     |        |        |     | 52 TX              | 4          |            |            |
|     | 3-45   |        |     | 53 TX              | 4          |            |            |
|     | 3-45   | 50-30  |     | 62 ПX              | 6          |            |            |
|     | 5-60   | 70-40  |     | 63 TX              | 6          |            |            |
|     | 5-60   | 70-40  |     | 72 ПX              | 6          |            |            |
|     | 10-80  | 70-40  | 100 | 73 TX              | 6          |            |            |
|     | 10-80  | 70-40  | 100 | 82 TX              | 6          |            |            |
|     | 10-100 | 110-80 | 100 | 83 TX              | 6          |            |            |

#### Варианты изготовления:

- калориферы с нестандартными размерами;
- калориферы с нестандартным количеством ходов по теплоносителю;
- без оребрения теплоотдающих элементов (воздух с содержанием волокнистых веществ);
- из нержавеющей стали марки AISI304 (12X18H10) и 12X18H10T.






| $(\checkmark)$ | н | аз | на | ч | eı | ΗИ | E |
|----------------|---|----|----|---|----|----|---|
| \ ' /          |   |    |    |   |    |    | _ |

Агрегаты воздушно-отопительные одноструйные типа AO2 (водяные) и AO2-П (паровые) применяются для воздушного отопления помещений промышленного и сельскохозяйственного назначения, а также в отопительно-вентиляционных системах зданий, в условиях умеренного (У) климата категории размещения 3 по ГОСТ 15150-69.

Воздух должен быть с предельно допустимым содержанием химически агрессивных веществ по ГОСТ 12.1.005-88, с запыленностью не более 0,5 мг/м3 и не содержать липких веществ и волокнистых материалов.

Теплоноситель - горячая (перегретая) вода (для АО2 на базе



 A02-3
 A02-3Π

 A02-4
 A02-4Π

 A02-6.3
 A02-6.3Π

 A02-10
 A02-10Π

 A02-20
 A02-20Π

 A02-25
 A02-25Π

калорифера типа КСк) или сухой насыщенный пар (для AO2-П на базе воздухонагревателя типа КП) с температурой не более 190°С и рабочим давлением не более 1,2 МПа.

Агрегаты отопительные типа AO2 изготавливаются правого исполнения - если смотреть на агрегат со стороны осевого вентилятора, патрубки калорифера находятся справа агрегата, и левого - патрубки находятся слева.

Агрегаты отопительные типа AO2 имеют защитную сетку, предохраняющую от удара и деформаций. Для удобства эксплуатации вынесена коробка для подключения агрегата к сети.

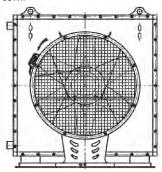



Рис. 30. Варианты изготовления агрегатов воздушно-отопительных типа АО2.

#### Технические характеристики

Таб. 54. Технические характеристики агрегатов АО2 на базе калориферов типа КСк.

|                                                  |          |          | Значение пара | метра    |          |          |
|--------------------------------------------------|----------|----------|---------------|----------|----------|----------|
| Наименование параметра                           | A02-3    | A02-4    | A02-6,3       | A02-10   | A02-20   | A02-25   |
| Производительность по воздуху, м <sup>3</sup> /ч | 2600     | 4000     | 6300          | 10000    | 20000    | 25000    |
| Производительность по теплу, кВт                 | 29       | 48       | 71,8          | 118,6    | 233,8    | 325,7    |
| Температура теплоносителя вход/выход, °С         | 95/70    | 95/70    | 95/70         | 95/70    | 95/70    | 95/70    |
| Установочная мощность, кВт                       | 0,25     | 0,37     | 0,55          | 0,75     | 2,2      | 2,2      |
| Сечение для прохода теплоносителя, м²            | 0,001162 | 0,001489 | 0,001707      | 0,002143 | 0,002796 | 0,003704 |
| Сечение патрубка, м²                             | 0,00101  | 0,00101  | 0,00101       | 0,00221  | 0,00221  | 0,00221  |
| Диаметр патрубка, Ду                             | 32       | 32       | 32            | 50       | 50       | 50       |
| Число ходов                                      | 4        | 4        | 4             | 4        | 4        | 4        |
| Число рядов                                      | 3        | 3        | 3             | 3        | 3        | 4        |
| Расход воды, м³/ч                                | 1,0      | 1,5      | 2,5           | 4,2      | 8,3      | 11,5     |
| Температура воздуха на выходе/входе, ${}^0C$     | 0/32     | 0/32     | 0/32          | 0/32     | 0/32     | 0/35     |
| Масса, кг                                        | 72       | 100      | 114           | 158      | 253      | 287      |
| Синхронная частота вращения, мин-1               | 1000     | 1000     | 1000          | 1000     | 1000     | 1000     |



Таб. 55. Технические характеристики агрегатов АО2-П на базе воздухонагревателя типа КП.

|                                                     |          |          | Значение пара | метра    |          |          |
|-----------------------------------------------------|----------|----------|---------------|----------|----------|----------|
| Наименование параметра                              | A02-3    | A02-4    | A02-6,3       | A02-10   | A02-20   | A02-25   |
| Производительность по воздуху, м <sup>3</sup> /ч    | 2600     | 4000     | 6300          | 10000    | 20000    | 25000    |
| Производительность по теплу, кВт                    | 70       | 110      | 155           | 240      | 450      | 640      |
| Параметры пара, t/P, °C/МПа                         | 150/0,48 | 150/0,48 | 150/0,48      | 150/0,48 | 150/0,48 | 150/0,48 |
| Установочная мощность, кВт                          | 0,25     | 0,37     | 0,55          | 0,75     | 2,2      | 2,2      |
| Сечение для прохода теплоносителя, м²               | 0,004649 | 0,005956 | 0,006828      | 0,008571 | 0,011186 | 0,014817 |
| Сечение патрубка, м²                                | 0,00221  | 0,00221  | 0,00221       | 0,00355  | 0,00355  | 0,00355  |
| Диаметр патрубка, Ду                                | 50       | 50       | 50            | 65       | 65       | 65       |
| Число ходов                                         | 1        | 1        | 1             | 1        | 1        | 1        |
| Число рядов                                         | 3        | 3        | 3             | 3        | 3        | 4        |
| Расход пара, кг/ч                                   | 130      | 170      | 250           | 390      | 690      | 1000     |
| Температура воздуха на выходе∕входе, <sup>0</sup> С | -20/50   | -20/50   | -20/45        | -20/45   | -20/45   | -20/45   |
| Масса, кг                                           | 71       | 99       | 112           | 156      | 251      | 285      |
| Синхронная частота вращения, мин <sup>-1</sup>      | 1000     | 1000     | 1000          | 1000     | 1000     | 1000     |

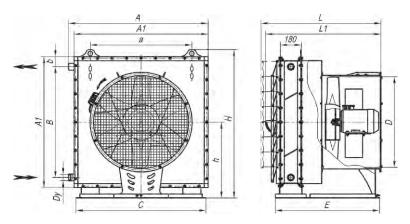



Рис. 31. Габаритные и присоединительные размеры агрегатов АО2 на базе калориферов типа КСк.

Таб. 56. Габаритные и присоединительные размеры агрегатов АО2 на базе калориферов типа КСк.

|        | Значение параметра |      |     |     |    |      |     |    |     |      |     |      |      |                   |
|--------|--------------------|------|-----|-----|----|------|-----|----|-----|------|-----|------|------|-------------------|
| № AO 2 | А                  | A1   | a   | В   | b  | С    | D   | Dy | Е   | Н    | h   | L    | L1   | V, м <sup>3</sup> |
| 3      | 580                | 530  | 250 | 390 | 70 | 490  | 400 | 32 | 720 | 683  | 355 | 805  | 795  | 0,320             |
| 4      | 702                | 654  | 375 | 460 | 97 | 620  | 500 | 32 | 770 | 810  | 420 | 860  | 845  | 0,486             |
| 6,3    | 784                | 737  | 500 | 580 | 78 | 745  | 500 | 32 | 770 | 892  | 460 | 875  | 845  | 0,608             |
| 10     | 952                | 905  | 625 | 740 | 82 | 870  | 630 | 50 | 790 | 1061 | 545 | 890  | 860  | 0,899             |
| 20     | 1201               | 1154 | 875 | 977 | 78 | 1120 | 800 | 50 | 915 | 1310 | 670 | 1055 | 1015 | 1,660             |
| 25*    | 1201               | 1154 | 875 | 977 | 78 | 1120 | 800 | 50 | 915 | 1310 | 670 | 1055 | 1015 | 1,660             |

<sup>\*</sup> Агрегат воздушно-отопительный водяной АО2-25 отличается от АО2-20 тем, что он изготовлен на базе четырёхрядного калорифера типа КСк.

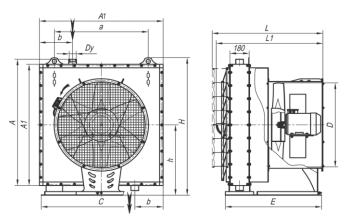



Рис. 46. Габаритные и присоединительные размеры агрегатов АО 3-6,3П на базе воздухонагревателя типа КП.

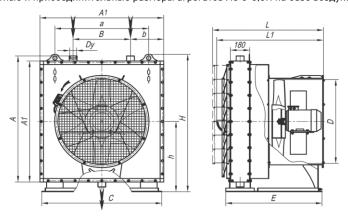



Рис. 32. Габаритные и присоединительные размеры агрегатов АО 10-25П на базе воздухонагревателя типа КП.

Таб. 59. Габаритные и присоединительные размеры агрегатов АО2-П на базе воздухонагревателей типа КП.

|        |      |      |     |     |     | Знач | ение пара | метра |     |      |     |      |      |                   |
|--------|------|------|-----|-----|-----|------|-----------|-------|-----|------|-----|------|------|-------------------|
| № AO 2 | А    | A1   | a   | В   | b   | С    | D         | Dy    | Е   | Н    | h   | L    | L1   | V, м <sup>3</sup> |
| 3      | 580  | 530  | 250 | -   | 100 | 490  | 400       | 50    | 720 | 683  | 355 | 805  | 795  | 0,320             |
| 4      | 702  | 654  | 375 | -   | 100 | 620  | 500       | 50    | 770 | 810  | 420 | 860  | 845  | 0,486             |
| 6,3    | 784  | 737  | 500 | -   | 100 | 745  | 500       | 50    | 770 | 892  | 460 | 875  | 845  | 0,608             |
| 10     | 952  | 905  | 625 | 410 | 248 | 870  | 630       | 65    | 790 | 1061 | 545 | 890  | 860  | 0,899             |
| 20     | 1201 | 1154 | 875 | 535 | 310 | 1120 | 800       | 65    | 915 | 1310 | 670 | 1055 | 1015 | 1,660             |
| 25*    | 1201 | 1154 | 875 | 535 | 310 | 1120 | 800       | 65    | 915 | 1310 | 670 | 1055 | 1015 | 1,660             |

<sup>\*</sup> Агрегат воздушно-отопительный водяной АО2-25П отличается от АО2-20П тем, что он изготовлен на базе четырёхрядного калорифера типа КП.

<sup>\*</sup> По спецзаказу возможно изготовление агрегатов воздушно-отопительных АО2 с 2 калориферами.

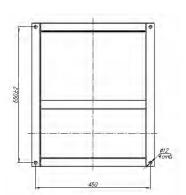



Рис. 33. Присоединительные размеры по фундаменту агрегатов AO 2-3.

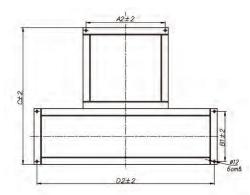



Рис. 34. Присоединительные размеры по фундаменту агрегатов AO 2-4 – AO 2-25.

| Nº<br>AO 2 | A2  | D2   | п, отв | B1  | С   |
|------------|-----|------|--------|-----|-----|
| 3          | 450 | 460  | 4      | -   | 650 |
| 4          | 305 | 590  | 6      | 235 | 740 |
| 6,3        | 305 | 715  | 6      | 235 | 740 |
| 10         | 375 | 840  | 6      | 235 | 760 |
| 20         | 440 | 1090 | 6      | 235 | 885 |
| 25         | 440 | 1090 | 6      | 235 | 885 |

Таб. 58. Присоединительные размеры по фундаменту агрегатов AO 2-4 – AO 2-25.



### Габаритные размеры калориферов для АО

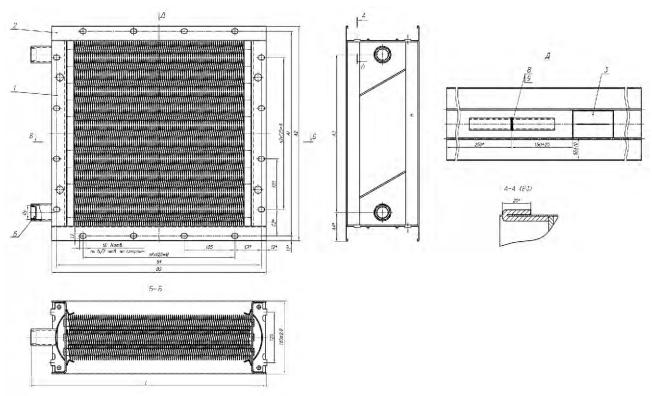



Рис. 48. Габаритные и присоединительные размеры калориферов для АО.

Таб. 59. Габаритные и присоединительные размеры калориферов для АО.

| Типоразмер                       |       |           |       |           | Размеры,мм |       |           |            |            |
|----------------------------------|-------|-----------|-------|-----------|------------|-------|-----------|------------|------------|
| воздухонагревателя               | А     | A1        | A2    | А3        | A4         | В     | B1        | B2         | C1         |
| A02-3M                           | 375   | 505,5±2,0 | 529,5 | 390±3,0   | 69,75      | 375   | 505,5±2,0 | 529,5      | 65,25      |
| A02-4M                           | 500   | 630±3,0   | 654   | 460±3,0   | 97         | 500   | 630±3,0   | 654        | 65         |
| A02-6,3M                         | 625   | 713±3,0   | 737   | 580±4,0   | 78,5       | 625   | 713±3,0   | 737        | 44         |
| A02-10M                          | 750   | 881±3,0   | 905   | 740±4,0   | 82,5       | 750   | 881±3,0   | 905        | 65,5       |
| A02-20M                          | 875   | 1 130±3,0 | 1 154 | 977±5,0   | 78,5       | 1 000 | 1 130±3,5 | 1 154      | 65         |
| A02-25M                          | 875   | 1 130±3,0 | 1 154 | 977±5,0   | 78,5       | 1 000 | 1 130±3,5 | 1 154      | 65         |
| СТД-300                          | 1 125 | 1 339±3,0 | 1 363 | 1 160±5,0 | 101,5      | 1 125 | 1 339±5,0 | 1 363      | 107        |
| T                                |       | Разме     | ры,мм |           |            |       |           | Масс       | са, кг     |
| Типоразмер<br>воздухонагревателя | C2    | Dy**      | L     | h         | N          |       | n2        | 3-х рядный | 4-х рядный |
| A02-3M                           | 65,25 | 32        | 580   | 215       | 32         | 3     | 3         | 25         | _          |
| A02-4M                           | 65    | 32        | 702   | 280       | 40         | 4     | 4         | 36         | _          |
| A02-6,3M                         | 44    | 32        | 784   | 320       | 48         | 5     | 5         | 44         | _          |
| A02-10M                          | 65,5  | 50        | 952   | 400       | 56         | 6     | 6         | 64         | _          |
| A02-20M                          | 65    | 50        | 1 201 | 530       | 72         | 8     | 8         | 98         | _          |
| A02-25M                          | 65    | 50        | 1 201 | 530       | 72         | 8     | 8         | -          | 124        |
| СТД-300                          | 107   | 50        | 1 412 | 630       | 80         | 9     | 9         | 137        | _          |



## АГРЕГАТ ВОЗДУШНО-ОТОПИТЕЛЬНЫЙ АО2-50

Водяной AO2-50 Паровой AO2-50П (спецзаказ)



Агрегаты воздушно-отопительные одноструйные типа AO2-50 применяются для воздушного отопления помещений промышленного и сельскохозяйственного назначения, а также в отопительно-вентиляционных системах зданий, в условиях умеренного (У) климата категории размещения 3 по ГОСТ 15150-69.

Воздух должен быть с предельно допустимым содержанием химически агрессивных веществ по ГОСТ 12.1.005-88, с запыленностью не более 0,5 мг/м3 и не содержать липких веществ и волокнистых материалов.

Теплоноситель - горячая (перегретая) вода (для A02-50 на базе калориферов типа КСк) или сухой насыщенный пар (для A02-50П на базе воздухонагревателей типа КП, изготавливается по согласованию с заказчиком) с температурой не более 190°С и рабочим давлением не более 1,2 МПа.

Агрегаты отопительные типа AO2-50 (водяные) изготавливаются правого исполнения - если смотреть на агрегат со стороны осевого вентилятора, патрубки калориферов находятся справа агрегата, и левого - патрубки находятся слева.

#### Технические характеристики

Технические характеристики AO2-50 на базе калориферов типа КСк3-12-02XЛ3 (2 шт.)

| Производительность по воздуху, м³/ч         | 60000        |
|---------------------------------------------|--------------|
| Производительность по теплу, кВт            | 900          |
| Температура теплоносителя, °С               | на входе 95  |
|                                             | на выходе 70 |
| Температура воздуха на входе / выходе, °C   | 16           |
| Мощность установочная электродвигателя, кВт | 7,5          |
| Синхронная частота вращения, мин-1          | 1000         |
| Масса не более, кг                          | 820          |
| Объем, м <sup>3</sup>                       | 5,530        |

### Технические характеристики AO2-50 П на базе воздухонагревателя типа $K\Pi$ -3-12-CK-01 $X\Pi$ 3 (2шт.)

| Производительность по воздуху, м³/ч         | 53000      |
|---------------------------------------------|------------|
| Производительность по теплу, кВт            | 900        |
| Параметры пара, t °C / p Мпа                | 150 / 0,48 |
| Расход пара, кг/ч                           | 3065       |
| Температура воздуха на входе / выходе, °С   | -20/60     |
| Мощность установочная электродвигателя, кВт | 7,5        |
| Синхронная частота вращения, мин-1          | 1000       |
| Масса не более, кг                          | 820        |
| Объем, м <sup>3</sup>                       | 5,530      |

### Габаритные и присоединительные размеры

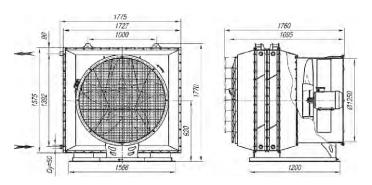



Рис. 35. Габаритные и присоединительные размеры агрегата AO2-50 на базе двух водяных калориферов КСК 3-12-02 ХЛЗ.

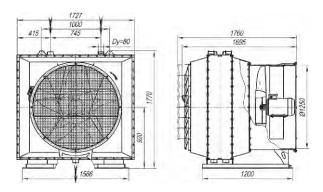



Рис. 36. Габаритные и присоединительные размеры агрегата AO2-50 на базе двух паровых воздухонагревателей КП 3-12-СК-01 ХЛЗ.



## 10 АГРЕГАТ ВОЗДУШНО-ОТОПИТЕЛЬНЫЙ СТД-300

водяной СТД-300 паровой СТД-300П



Агрегаты воздушно-отопительные одноструйные типа СТД-300 применяются для воздушного отопления помещений промышленного и сельскохозяйственного назначения, а также в отопительно-вентиляционных системах зданий, в условиях умеренного (У) климата категории размещения 3 по ГОСТ 15150-69.

Воздух должен быть с предельно допустимым содержанием химически агрессивных веществ по ГОСТ 12.1.005-88, с запыленностью не более 0,5 мг/м³ и не содержать липких веществ и волокнистых материалов.

Теплоноситель - горячая (перегретая) вода (для СТД-300 на базе калорифератипа КСк) или сухой насыщенный пар (для СТД-300-П на базе воздухонагревателя типа КП) с температурой не более 190°С и рабочим давлением не более 1,2 МПа. Агрегаты отопительные типа СТД-300 (водяные) изготавливаются правого исполнения - если смотреть на агрегат со стороны осевого вентилятора, патрубки калорифера находятся справа агрегата и левого - патрубки находятся слева.

#### Технические характеристики

### Технические характеристики СТД-300 на базе калориферов типа КСк

| Производительность по воздуху, м³/ч         | 25000       |
|---------------------------------------------|-------------|
| Производительность по теплу, кВт            | 312,61      |
| Сечение для прохода теплоносителя, м²       | 0,003341    |
| Расход воды, м³/ч                           | 11,05       |
| Температура теплоносителя, °С               | на входе 95 |
|                                             | навыходе 70 |
| Температура воздуха, °С                     | на входе 0  |
|                                             | Навыходе 36 |
| Мощность установочная электродвигателя, кВт | r 2,2       |
| Синхронная частота вращения, мин-1          | 1000        |
| Масса не более, кг                          | 320         |
| Объем, м <sup>3</sup>                       | 2,484       |
|                                             |             |

### Технические характеристики СТД-300П на базе воздухонагревателей типа КП.

| Производительность по воздуху, м³/ч         | 25000      |
|---------------------------------------------|------------|
| Производительность по теплу, кВт            | 387,36     |
| Сечение для прохода теплоносителя, м²       | 0,013365   |
| Параметры пара, t °C / р Мпа                | 150 / 0,48 |
| Расход пара, кг/ч                           | 1067       |
| Мощность установочная электродвигателя, кВт | 2,2        |
| Синхронная частота вращения, мин 1          | 1000       |
| Масса не более, кг                          | 320        |
| Объем, м <sup>3</sup>                       | 2,484      |

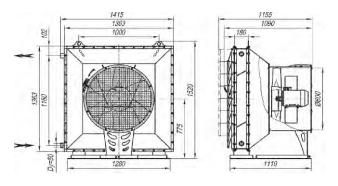



Рис. 37. Габаритные и присоединительные размеры агрегата СТД-300 на базе водяного воздухонагревателя типа КСК.

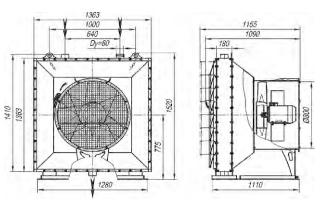



Рис. 38. Габаритные и присоединительные размеры агрегата СТД-300П на базе парового воздухонагревателя типа КП.





BHY-40-01 Y3 BHY-50-01 Y3 BHY-55-01 Y3 BHY-65-01 Y3 BHY-70-01 Y3 BHY-90-01 Y3



Воздухонагревательная установка предназначена для отопления, вентиляции, тепловых завес зданий промышленного назначения, гражданских зданий, офисов, магазинов, производственных помещений сельскохозяйственного назначения.

Агрегаты должны эксплуатироваться в условиях умеренного (У) климата категории размещения 3 по ГОСТ 15150-69.

Воздух должен быть с предельно-допустимым содержанием химически агрессивных-веществ по ГОСТ 12.1.005-88, с запыленностью не более 0,5 мг/м³ и не содержать липких веществ и волокнистых материалов.

Теплоноситель - горячая (перегретая) вода температурой не более 190°С и давлением не более 1,2 МПа.

Установка состоит из водяного калорифера и радиального вентилятора ВЦ 14-46-3,15, соединенных между собой конфузором через гибкую вставку и смонтированных на общей сварной раме.

По желанию заказчика установка может комплектоваться блоком управления, предназначенным для управления электродвигателя вентилятора и узлом обвязки, предназначенным для регулировки температуры воздуха.

Таб. 59. Комплектация воздухонагревательных установок ВНУ вентиляторами.

| Наименование продукции | Марка вентилятора | Мощность вентилятора, кВт | Частота вращения, об/мин |
|------------------------|-------------------|---------------------------|--------------------------|
| ВНУ-40-01 УЗ           |                   | 1,1                       | 1500                     |
| ВНУ-50-01 УЗ           |                   | 1,1                       | 1500                     |
| ВНУ-55-01 УЗ           | ВЦ 14-46 № 3,15   | 1,1                       | 1500                     |
| ВНУ-65-01 УЗ           |                   | 1,1                       | 1500                     |
| ВНУ-70-01 УЗ           |                   | 2,2                       | 1500                     |
| ВНУ-90-01 УЗ           |                   | 2,2                       | 1500                     |

### Технические характеристики

Таб. 60. Технические характеристики воздухонагревательных установок ВНУ.

| Наименование<br>продукции | Комплектация<br>калорифером | Двигатель<br>кВт/об/мин. | Произ-ть<br>по воздуху, м3/ч | Давление, Па | Произ-ть по теплу (кВт), для t <sup>0</sup> гра-<br>фика по греющему теплоносителю 95/70°C | возлуха | Масса, кг,<br>не более |        |     |
|---------------------------|-----------------------------|--------------------------|------------------------------|--------------|--------------------------------------------------------------------------------------------|---------|------------------------|--------|-----|
| ВНУ-40-01                 | КСк 3-6                     |                          |                              | 770          | 52,3                                                                                       | -20/22  | 140                    |        |     |
| ВНУ-50-01                 | КСк 4-6                     | 4.4.4500                 | 3600                         | 3600         | 2/00                                                                                       | 730     | 59,9                   | -20/28 | 147 |
| ВНУ-55-01                 | КСк 3-7                     | 1,1/1500                 |                              |              | 790                                                                                        | 57,7    | -20/26                 | 145    |     |
| ВНУ-65-01                 | КСк 4-7                     |                          |                              | 750          | 65,1                                                                                       | -20/32  | 155                    |        |     |
| ВНУ-70-01                 | КСк 3-8                     |                          |                              | 790          | 78,8                                                                                       | -20/43  | 152                    |        |     |
| ВНУ-90-01                 | КСк 4-8                     | 2,2/1500                 | 5000                         | 760          | 89,1                                                                                       | -20/51  | 162                    |        |     |



Рис. 39. Габаритные и присоединительные размеры воздухонагревательных установок ВНУ.

Таб. 61. Габаритные и присоединительные размеры воздухонагревательных установок ВНУ.

| Наименование |     | Разме | Размеры, мм |     |  |  |  |
|--------------|-----|-------|-------------|-----|--|--|--|
| продукции    | a   | b     | С           | е   |  |  |  |
| ВНУ-40-01    | 400 | 432   | 602         | 650 |  |  |  |
| ВНУ-50-01    | 400 | 402   | 002         | 230 |  |  |  |
| ВНУ-55-01    | 500 | 532   | 727         | 775 |  |  |  |
| ВНУ-65-01    | 300 | 002   | , , ,       | 770 |  |  |  |
| ВНУ-70-01    | 600 | 632   | 852         | 900 |  |  |  |
| ВНУ-90-01    | 330 | 002   | 032         | 700 |  |  |  |





BTY-4 BTY-5 BTY-6,3 BTY-8



Воздухонагревательная установка типа ВТУ предназначена для нагрева и перемещения воздуха в приточных камерах, воздушно-тепловых завесах, рециркуляционных установках, также для нагрева производственных и бытовых помещений. Тепловым носителем является перегретая вода, температура которой достигает 190°С с давлением до 1,2 МПа.

Установка состоит из калорифера (или калориферов) и радиального вентилятора ВР 80-75, соединенных между собой с помощью конфузора через гибкую вставку и смонтированы на общей сварной раме.

Воздухонагревательные установки типа ВТУ отличаются от установок типа ВНУ повышенной производительностью по теплу.

Таб. 62. Комплектация воздухонагревательных установок ВТУ вентиляторами.

| Наименование продукции | Марка вентилятора | Мощность вентилятора, кВт | Частота вращения, об/мин |
|------------------------|-------------------|---------------------------|--------------------------|
| ВТУ-4                  | BP 80-75 №4       | 0,75                      | 1500                     |
| ВТУ-5                  | BP 80-75 №5       | 2,2                       | 1500                     |
| ВТУ-6,3                | BP 80-75 №6,3     | 3,0                       | 1000                     |
| ВТУ-8                  | BP 80-75 №8       | 7,5                       | 1000                     |

#### Технические характеристики

Таб. 63. Технические характеристики воздухонагревательных установок типа ВТУ.

| Наименование<br>продукции | Производительность<br>по воздуху, м3/ч | Давление<br>по воздуху, Па | Тип калорифера<br>х количество | Произ-ть по теплу<br>(кВт), для t⁰ гра-<br>фика по греющему<br>теплоносителю<br>95/70°C | Температура воздуха<br>на входе/выходе ° С | Масса, кг |
|---------------------------|----------------------------------------|----------------------------|--------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|-----------|
| ВТУ-4                     | 4000                                   | 400                        | КСк 3-8х1                      | 74                                                                                      | -20/32                                     | 150       |
| ВТУ-5                     | 6000                                   | 770                        | КСк 4-9х1                      | 114                                                                                     | -20/34                                     | 220       |
| ВТУ-6,3                   | 8000                                   | 450                        | КСк 4-8х2                      | 162                                                                                     | -20/38                                     | 300       |
| ВТУ-8                     | 18000                                  | 950                        | A0 2-20x2                      | 375                                                                                     | -20/40                                     | 510       |

### Габаритные и присоединительные размеры

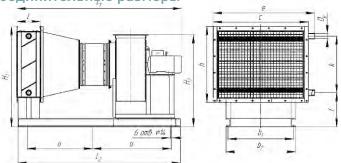



Рис. 40. Габаритные и присоединительные размеры воздухонагревательных установок типа ВТУ. Таб. 64. Габаритные и присоединительные размеры воздухонагревательных установок типа ВТУ.

| Наименование |      | Размеры, мм |      |      |      |      |     |     |      |      |    |     |     |     |
|--------------|------|-------------|------|------|------|------|-----|-----|------|------|----|-----|-----|-----|
| продукции    | L1   | L2          | H1   | H2   | h    | а    | b1  | b2  | С    | е    | Dy | ι   | f   | k   |
| ВТУ-4        | 1445 | 1430        | 863  | 852  | 575  | 665  | 768 | 800 | 852  | 900  | 32 | 180 | 360 | 430 |
| ВТУ-5        | 1750 | 1730        | 1000 | 1060 | 575  | 800  | 720 | 752 | 977  | 1025 | 32 | 180 | 500 | 430 |
| ВТУ-6,3      | 2130 | 2120        | 1173 | 1306 | 575  | 1000 | 768 | 800 | 852  | 900  | 32 | 360 | 670 | 430 |
| ВТУ-8        | 2225 | 2210        | 1585 | 1532 | 1154 | 1050 | 930 | 970 | 1154 | 1200 | 50 | 360 | 500 | 977 |



### УСТАНОВКИ ВОЗДУХО-НАГРЕВАТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ УВНЭ

УВНЭ-15-02УХЛ4 УВНЭ-45-02 УХЛ4 УВНЭ-30-01 УХЛ4 УВНЭ-65-01 УХЛ4 УВНЭ-30-02 УХЛ4 УВНЭ-65-02 УХЛ4 УВНЭ-45-01 УХЛ4 УВНЭ-90-01 УХЛ4

Таб. 65. Комплектация воздухонагревательных установок УВНЭ вентиляторами.

| 72.10 20.11.11.10 pa.11.11 |                      |                              |                             |  |  |  |  |  |  |
|----------------------------|----------------------|------------------------------|-----------------------------|--|--|--|--|--|--|
| Наименование<br>продукции  | Марка<br>вентилятора | Мощность<br>вентилятора, кВт | Частота<br>вращения, об/мин |  |  |  |  |  |  |
| УВНЭ-15-02 УХЛ4            | ВЦ 14-46 №3,15       | 1,1                          | 1500                        |  |  |  |  |  |  |
| УВНЭ-30-01 УХЛ4            | ВЦ 14-46 №3,15       | 1,1                          | 1500                        |  |  |  |  |  |  |
| УВНЭ-30-02 УХЛ4            | ВЦ 14-46 №3,15       | 1,1                          | 1500                        |  |  |  |  |  |  |
| УВНЭ-45-01 УХЛ4            | ВЦ 14-46 №3,15       | 2,2                          | 1500                        |  |  |  |  |  |  |
| УВНЭ-45-02 УХЛ4            | ВЦ 14-46 №3,15       | 2,2                          | 1500                        |  |  |  |  |  |  |
| УВНЭ-65-01 УХЛ4            | ВЦ 14-46 №4          | 4                            | 1500                        |  |  |  |  |  |  |
| УВНЭ-65-02 УХЛ4            | ВЦ 14-46 №4          | 4                            | 1500                        |  |  |  |  |  |  |
| УВНЭ-90-01 УХЛ4            | ВЦ 14-46 №4          | 7,5                          | 1500                        |  |  |  |  |  |  |

### ✓ Назначение

Установки воздухонагревательные электрические (УВНЭ) с радиальным вентилятором ВЦ 14-46 и ящиком управления предназначены для нагрева воздуха в системах воздушного отопления помещений промышленного, коммунального, бытового, культурного, сельскохозяйственного назначения, а также торговых точек, ремонтных мастерских, гаражей и в составе технологического оборудования. При этом окружающая среда должна быть невзрывоопасна и не должна содержать токопроводящей пыли.

Условия эксплуатации - умеренно холодный климат (УХЛ) категории размещения 4 по ГОСТ 15150-69.

Установки комплектуются воздухонагревателями электрическими серии ВНЭ.

### Технические характеристики

Таб. 66. Технические характеристики установок УВНЭ.

|                                                                                 |                    | Значение парам | етра         |              |  |  |  |  |  |
|---------------------------------------------------------------------------------|--------------------|----------------|--------------|--------------|--|--|--|--|--|
| Наименование параметра                                                          | УВНЭ-30-01         | УВНЭ-45-01     | УВНЭ-65-01   | УВНЭ-90-01   |  |  |  |  |  |
| Устанавливаемая мощность, кВт, не более.<br>В том числе воздухонагревателя, кВт | 23,6<br>22,5       | 47,2<br>45,0   | 71,5<br>67,5 | 97,5<br>90,0 |  |  |  |  |  |
| Производительность по воздуху (min), м3/ч                                       | 2000               | 3000           | 4000         | 7500         |  |  |  |  |  |
| Перепад температур входящего<br>и выходящего воздуха, °C, не более              | 24                 | 51             | 59           | 40           |  |  |  |  |  |
| Аэродинамическое сопротивление, Па,<br>не более                                 | 150                | 110            | 95           | 175          |  |  |  |  |  |
| Расчетное воздушное давление,<br>развиваемое вентилятором, Па, не более         | 500                | 800            | 1400         | 1500         |  |  |  |  |  |
| Номинальное напряжение электросети, В                                           |                    | 380:           | ±28,5        |              |  |  |  |  |  |
| Частота тока, Гц                                                                | 50                 |                |              |              |  |  |  |  |  |
| Число фаз                                                                       |                    |                | 3            |              |  |  |  |  |  |
| Масса, кг, не более                                                             | 66                 | 79             | 141          | 170          |  |  |  |  |  |
| Наименование параметра                                                          | Значение параметра |                |              |              |  |  |  |  |  |
| паименование параметра                                                          | УВНЭ-15-02         | УВНЭ-30-02     | УВНЭ-45-02   | УВНЭ-65-02   |  |  |  |  |  |
| Устанавливаемая мощность, кВт, не более.<br>В том числе воздухонагревателя, кВт | 15,5<br>14,4       | 29,9<br>28,8   | 45,4<br>43,2 | 61,6<br>57,6 |  |  |  |  |  |
| Производительность по воздуху (min), м3/ч                                       | 2000               | 2500           | 3000         | 4000         |  |  |  |  |  |
| Перепад температур входящего<br>и выходящего воздуха, °C, не более              | 24                 | 39             | 4            | 9            |  |  |  |  |  |
| Аэродинамическое сопротивление, Па,<br>не более                                 | 155                | 85             | 6            | 5            |  |  |  |  |  |
| Расчетное воздушное давление,<br>развиваемое вентилятором, Па, не более         | 50                 | 00             | 800          | 1400         |  |  |  |  |  |
| Номинальное напряжение электросети, В                                           | 380±28,5           |                |              |              |  |  |  |  |  |
| Частота тока, Гц                                                                | 50                 |                |              |              |  |  |  |  |  |
| Число фаз                                                                       | 3                  |                |              |              |  |  |  |  |  |
| Масса, кг, не более                                                             | 66                 | 74             | 86           | 148          |  |  |  |  |  |

Примечание: перепад температур входящего и выходящего воздуха указан для минимальной производительности по воздуху, 100 % мощности воздухонагревателя с учетом положительных допусков по напряжению питающей сети и мощности электронагревателей и при температуре входящего воздуха 0°C.



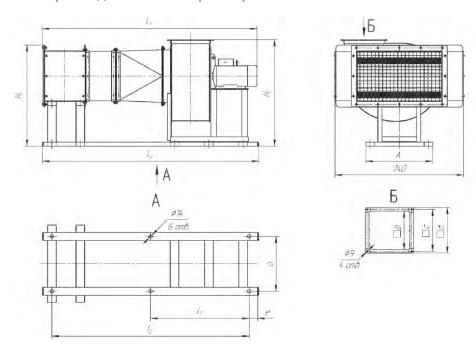



Рис. 41. Габаритные и присоединительные размеры установок УВНЭ.

Таб. 67. Габаритные и присоединительные размеры установок УВНЭ.

| Наименование |     | Размеры, мм |     |      |      |     |     |     |     |     |     |      |       |
|--------------|-----|-------------|-----|------|------|-----|-----|-----|-----|-----|-----|------|-------|
| продукции    |     | H1          | H2  | L1   | L2   | а   |     | С   | d   |     | l1  | l2   |       |
| УВНЭ-15-02   | 390 | 560         | 660 | 1335 | 1340 | 340 | 221 | 241 | 261 | 65  | 600 | 1200 | 0,654 |
| УВНЭ-30-01   | 390 | 560         | 660 | 1335 | 1340 | 340 | 221 | 241 | 261 | 65  | 600 | 1200 | 0,654 |
| УВНЭ-30-02   | 390 | 625         | 660 | 1335 | 1340 | 340 | 221 | 241 | 261 | 65  | 600 | 1200 | 0,654 |
| УВНЭ-45-01   | 390 | 625         | 660 | 1350 | 1340 | 340 | 221 | 241 | 261 | 65  | 600 | 1200 | 0,659 |
| УВНЭ-45-02   | 390 | 695         | 660 | 1350 | 1340 | 340 | 221 | 241 | 261 | 65  | 600 | 1200 | 0,694 |
| УВНЭ-65-01   | 322 | 845         | 852 | 1405 | 1380 | 290 | 280 | 300 | 320 | 40  | 650 | 1300 | 0,886 |
| УВНЭ-65-02   | 322 | 910         | 852 | 1405 | 1380 | 290 | 280 | 300 | 320 | 40  | 650 | 1300 | 0,946 |
| УВНЭ-90-01   | 352 | 910         | 852 | 1655 | 1620 | 290 | 280 | 300 | 320 | 160 | 650 | 1300 | 1,114 |

Примечание: По умолчанию установка поставляется с вентилятором правого вращения Пр 0°. Установка может также поставляться с вентилятором левого вращения. Конструкция вентилятора позволяет поворачивать корпус в любое положение по ГОСТ 5976-90 (кроме Пр180°иЛ180°).



### ЭЛЕКТРОКАЛОРИФЕРНЫЕ УСТАНОВКИ ЭКОЦ (АНАЛОГ СФОЦ)



| ЭКОЦ-5  | ЭКОЦ-60  |
|---------|----------|
| ЭКОЦ-10 | ЭКОЦ-100 |
| ЭКОЦ-16 | ЭКОЦ-160 |
| ЭКОЦ-25 | ЭКОЦ-250 |
| ЭКОЦ-40 | ЭКОЦ-320 |

Таб. 68. Комплектация установок ЭКОЦ вентиляторами.

| Наименование<br>продукции | Марка<br>вентилятора | Мощность<br>вентилятора, кВт | Частота<br>вращения, об/мин |
|---------------------------|----------------------|------------------------------|-----------------------------|
| экоц-5                    | BP 80-75 №2,5        | 0,12                         | 1500                        |
| ЭКОЦ-10                   | BP 80-75 №3,15       | 0,25                         | 1500                        |
| ЭКОЦ-16                   | BP 80-75 №4          | 0,75                         | 1500                        |
| ЭКОЦ-25                   | BP 80-75 №4          | 0,75                         | 1500                        |
| ЭКОЦ-40                   | BP 80-75 №5          | 1,5                          | 1500                        |
| ЭКОЦ-60                   | BP 80-75 №5          | 2,2                          | 1500                        |
| ЭКОЦ-100                  | BP 80-75 №6,3        | 5,5                          | 1500                        |
| ЭКОЦ-160                  | BP 80-75 №6,3        | 7,5                          | 1500                        |
| ЭКОЦ-250                  | BP 80-75 №8          | 7,5                          | 1000                        |

### **√** Назначение

Предназначены для отопления больших помещений производственного назначения (цеха, фермы, склада), а также в качестве приточно-вентиляционных установок и воздушнотепловых завес. Установка состоит из электрического калорифера и радиального вентилятора ВЦ 80-75, соединенных между собой конфузором через гибкую вставку и смонтированы на общей раме.

### Технические характеристики

Таб. 69. Технические характеристики установок ЭКОЦ.

| Наименование<br>продукции | Мощность, кВт | Производительность<br>по воздуху, м³/ч | Перепад температуры<br>на входе и выходе,°С | Полный<br>аэродинамический<br>напор, развиваемый<br>вентилятором, Па | Масса, кг |
|---------------------------|---------------|----------------------------------------|---------------------------------------------|----------------------------------------------------------------------|-----------|
| экоц-5                    | 5             | 500                                    | 35                                          | 200                                                                  | 42        |
| ЭКОЦ-10                   | 10            | 800                                    | 35                                          | 400                                                                  | 60        |
| ЭКОЦ-16                   | 16            | 1900                                   | 35                                          | 400                                                                  | 95        |
| ЭКОЦ-25                   | 23,3          | 2500                                   | 35                                          | 500                                                                  | 100       |
| экоц-40                   | 46,5          | 3500                                   | 50                                          | 800                                                                  | 208       |
| экоц-60                   | 69,7          | 4000                                   | 65                                          | 950                                                                  | 215       |
| ЭКОЦ-100                  | 95,5          | 5000                                   | 70                                          | 1100                                                                 | 259       |
| ЭКОЦ-160                  | 165           | 7500                                   | 85                                          | 1500                                                                 | 292       |
| ЭКОЦ-250                  | 250           | 10000                                  | 100                                         | 1700                                                                 | 547       |

<sup>\*</sup> ЭКОЦ-320 - по спец. заказу



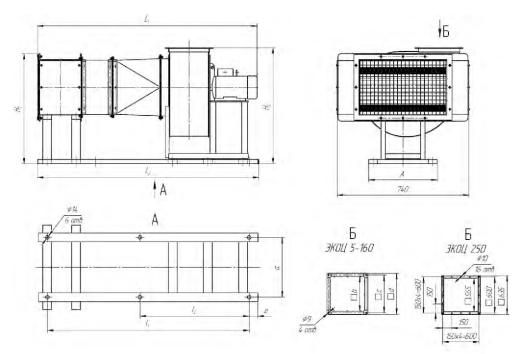



Рис. 42. Габаритные и присоединительные размеры установок ЭКОЦ.

Таб. 70. Габаритные и присоединительные размеры установок ЭКОЦ.

| Наименование<br>продукции | I1   | 12   | L1   | L2   | a   | A   | H1   | H2   | b   | С   | d   | V, м³ |
|---------------------------|------|------|------|------|-----|-----|------|------|-----|-----|-----|-------|
| экоц-5                    | 1150 | 575  | 1120 | 1260 | 350 | 400 | 530  | 460  | 175 | 195 | 215 | 0,494 |
| экоц-10                   | 1150 | 575  | 1170 | 1260 | 350 | 400 | 560  | 660  | 221 | 241 | 261 | 0,616 |
| ЭКОЦ-16                   | 1250 | 625  | 1235 | 1360 | 400 | 450 | 660  | 812  | 280 | 300 | 320 | 0,817 |
| ЭКОЦ-25                   | 1250 | 625  | 1300 | 1440 | 400 | 450 | 660  | 812  | 280 | 300 | 320 | 0,865 |
| экоц-40                   | 1500 | 750  | 1600 | 1580 | 410 | 442 | 910  | 1062 | 350 | 390 | 370 | 1,257 |
| экоц-60                   | 1550 | 750  | 1600 | 1580 | 410 | 442 | 975  | 1062 | 350 | 390 | 370 | 1,257 |
| ЭКОЦ-100                  | 1900 | 950  | 2150 | 1960 | 510 | 542 | 1215 | 1305 | 441 | 461 | 481 | 2,076 |
| ЭКОЦ-160                  | 1900 | 950  | 2150 | 1960 | 510 | 542 | 1415 | 1305 | 441 | 461 | 481 | 2,251 |
| ЭКОЦ-250                  | 2200 | 1100 | 2750 | 2430 | 930 | 970 | 1620 | 1538 | 565 | 600 | 635 | 3,297 |

<sup>\*</sup> ЭКОЦ-320 - по спец. заказу



### ЭЛЕКТРОКАЛОРИФЕРНЫЕ УСТАНОВКИ ЭКУ



✓ Назначение

Электроустановка предназначена для нагрева и подачи воздуха в системах вентиляции и воздушного отопления в помещениях промышленного и сельскохозяйственного назначения, также применяется в строительстве для сушки штукатурки, строительных материалов, краски и создания комфортных условий при выполнении работ. Установка при работе создает перепад по температуре входящего и выходящего воздуха от +35°C до +65°C, что позволяет использовать его для приточной вентиляции и обогрева в режиме циркуляции. При необходимости в теплое время установку можно использовать как высокопроизводительный вентилятор, отключив электрокалорифер; снизить перепад входящего и выходящего воздуха за счет отключения секции ЭКУ.

ЭКУ-12ЭКУ-42ЭКУ-21ЭКУ-64ЭКУ-25ЭКУ-90

### 🗐 Общие сведения

Электрокалориферная установка ЭКУ – многофункциональный агрегат, предназначенный для нагрева и подачи воздуха в вентиляционных и отопительных системах. Основная область применения данного оборудования – производственные, строительные и аграрные объекты. ЭКУ подходит не только для обогрева и вентилирования воздуха, но и для просушивания отделочных материалов, нанесенных на стены и потолок.

### Варианты исполнения

Установки ЭКУ представлены широким спектром моделей с мощностью секций от 6 до 30 кВт. Они могут монтироваться на площадке или подвешиваться на кронштейн. Степень защиты агрегатов – IP-30. Электрокалориферные установки ЭКУ имеют три рабочих режима. Мощность агрегатов колеблется в пределах 12-90 кВт.

### Технические характеристики

Таб. 71. Технические характеристики ЭКУ.

|                                                                |           |           | Наимен    | ювание        |                        |               |
|----------------------------------------------------------------|-----------|-----------|-----------|---------------|------------------------|---------------|
| Параметры                                                      | ЭКУ-12    | ЭКУ-21    | ЭКУ-25    | ЭКУ-42        | ЭКУ-64                 | ЭКУ-90        |
| Мощность, кВт                                                  | 12        | 21        | 26,25     | 42            | 64                     | 90            |
| Производительность по воздуху, м <sup>3</sup> /ч               | 1000      | 1000      | 2500      | 3000          | 5000<br>3000           | 11000         |
| Перепад температур входящего и выходящего воздуха, °C не более | 35        | 45        | 35        | 55            | 35<br>65               | 25<br>35      |
| Количество секций                                              | 2         | 3         | 2         | 2             | 3                      | 3             |
| Степень защиты                                                 |           |           | lp        | 30            |                        |               |
| Вентилятор                                                     | BO-06-3   | 300-3,15  |           | BO-06-300-4,0 |                        | BO-06-300-6,3 |
| Мощность/кол-во оборотов, кВт/мин-1                            | 0,18/1000 | 0,25/1500 | 0,25/1500 | 0,25/1500     | 0,75/3000<br>0,25/1500 | 1,1/1500      |
| Тип напряжения, В/Гц                                           |           |           | 380       | /50           |                        |               |
| Масса, кг                                                      | 40        | 45        | 53        | 55            | 67<br>62               | 105           |



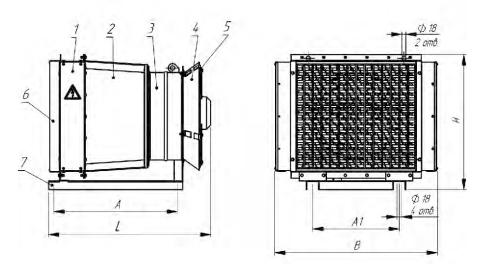



Рис. 43. Габаритные и присоединительные размеры ЭКУ (1 — калорифер, 2 — диффузор, 3 — вентилятор, 4 — коллектор, 5 — ограждение, 6 — решетка, 7 — площадка монтажная).

Таб. 72. Габаритные и присоединительные размеры ЭКУ.

| Наименование | А, мм | А1, мм | L, мм | В, мм | Н, мм | Количество<br>рядов ТЭНР | Масса, кг |
|--------------|-------|--------|-------|-------|-------|--------------------------|-----------|
| ЭКУ-12       | 570   | 300    | 735   | 510   | 510   | 2                        | 40        |
| ЭКУ-21       | 570   | 300    | 735   | 570   | 570   | 3                        | 45        |
| ЭКУ-25       | 570   | 400    | 755   | 625   | 625   | 2                        | 53        |
| ЭКУ-42       | 570   | 400    | 755   | 625   | 625   | 2                        | 55        |
| ЭКУ-64       | 570   | 400    | 755   | 625   | 625   | 3                        | 67<br>62  |
| ЭКУ-90       | 685   | 600    | 970   | 855   | 855   | 3                        | 90        |



## АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ АВО

Горизонтальные АВГ Зигзагообразные AB3 Малопоточные Дельтаобразные Их модификации

**ABM АВД** 

### Назначение

Аппараты предназначены для охлаждения и конденсации парообразных, газообразных и жидких сред в технологических процессах нефтеперерабатывающей, нефтехимической, химической, газовой и других отраслях промышленности при давлении охлаждаемой среды не более 16,0 МПа или под вакуумом с остаточным давлением не ниже 665 Па и температуре не выше 400 °C и изготовляются для внутренних и зарубежных поставок.

Климатическое исполнение аппаратов У1 и УХЛ1 по ГОСТ

Металлическая несущая конструкция предназначена для установки аппаратов в районах с сейсмичностью до 7 баллов (СНиП II-7) и скоростным напором ветра по IV географическому району (СНиП 7.01.07).

#### Общие сведения

Аппараты могут изготавливаться по согласованию с предприятием-изготовителем:

- для работы в условиях холодного климата со средней температурой воздуха в течение пяти суток подряд в наиболее холодный период не ниже минус 55°C - климатическое исполнение С:
- с металлической несущей конструкцией, предназначенной для установки аппаратов в районах с сейсмичностью до 9 баллов и скоростным напором ветра по V географическому
- с комплектующими системами:
- подвода и отвода продукта (коллекторами входа и выхода продукта и т.п.):
- рециркуляции воздуха;
- автоматизированного управления вентилятором с частотным преобразователем скорости вращения электродвигателя (далее частотный преобразователь) и вибровыключателем электродвигателя.
- с жалюзи с ручной, с пневматической или электромеханической регулировкой поворота лопаток (далее ручной привод, пневмопривод, электропривод);
- с увлажнителем воздуха, подогревателем воздуха или продукта;
- с площадками обслуживания и вспомогательным инструментом (развальцовочным инструментом, ключом для подтяжки гаек или пробок теплообменных секций (далее секций), тележкой для монтажа и демонтажа электродвигателя. Условные обозначения аппаратов при заказе приведены на рис. 999999.

Таб. 73. Предельные допускаемые температуры деталей, работающих под давлением среды.

| Климатическое исполнение по ГОСТ 15150 | Материальное исполнение по<br>ГОСТ Р 51364 | Допускаемые температурные пределы,<br>К (°C) |
|----------------------------------------|--------------------------------------------|----------------------------------------------|
| VVII1 (varanavinas ir varaninas)       | Б1, Б2, Б2.1, Б3, Б3.1, Б4, Б4.1           | От 233 (минус 40) до 573 (плюс 300)          |
| УХЛ1 (умеренное и холодное)            | Б5, Б5.1                                   | От 233 (минус 40) до 523 (плюс 250)          |
|                                        | Б1, Б2, Б2.1, Б3.1, Б4.1                   | От 233 (минус 40) до 573 (плюс 300)          |
| У1 (умеренное)                         | Б3, Б4                                     | От 233 (минус 40) до 573 (плюс 300)          |
|                                        | Б5, Б5.1                                   | От 233 (минус 40) до 523 (плюс 250)          |
| C (concruso)                           | Б1, Б2, Б2.1, Б3, Б3.1, Б4, Б4.1           | От 218 (минус 55) до 573 (плюс 300)          |
| С (северное)                           | Б5, Б5.1                                   | От 218 (минус 55) до 523 (плюс 250)          |

<sup>\*</sup> Максимальная температура деталей, работающих под давлением 673К (400°С), только для секций материального исполнения Б1 при применении труб с завальцованным в канавку ребром.



Таб. 74. Типы аппаратов и их модификации.

| Папацатац                                      |                            |                       | Гор            | оизонтал     |              | АВГ            | ·              |               |                | гзагообр  | азные -        | AB3     | Малопоточные<br>АВМ        | Дельтаобразные<br>АВД |
|------------------------------------------------|----------------------------|-----------------------|----------------|--------------|--------------|----------------|----------------|---------------|----------------|-----------|----------------|---------|----------------------------|-----------------------|
| Параметры                                      | АВГ                        | 2 АВГ                 | АВГ- В         | 1 АВГ-<br>ВП | 2 АВГ-<br>75 | 2 АВГ-<br>100  | АВГ-<br>160Г   | 1 АВГ-<br>160 | AB3            | 1AB3      | АВЗ-Д          | 2АВЗ-Д  | АВМ-Г<br>АВМ-В             | АВОГ-1                |
| Вязкость жидкой<br>среды 10 <sup>-4</sup> м²/с | До                         | 0,5                   | От 0,5<br>до 2 | 42           |              |                |                |               |                | 01        | 0,5            |         |                            |                       |
| Поверхность<br>теплообмена, м²                 | См. та                     | аб. В.1               | См.<br>таб.В.2 | 660          | 9 930        | 9 930          | 2 930<br>3 760 | 9 100         |                | См. та    | бл. В.3        |         | См. табл. В.4              | 8 020                 |
| Давление условное,<br>МПа                      |                            | 0,6; 1,6; 2,5; 6,3    |                |              | 7,5          | 10             | 16             | 16            |                | 0,6;1,6;2 | ,5;4,0;6,      | 3       | 0,6; 1,6; 2,5;<br>4,0; 6,3 | 0,09                  |
| Температурные пределы продукта, °С             |                            | См. табл.             | 2              | **           |              | yc 40<br>c 150 |                |               |                |           | См. т          | габл. 2 |                            |                       |
| Коэффициент<br>оребрения                       | 9; 14,6;<br>20             | 9; 20                 | 7,8            | 7            | 2            | 20             | 14,6; 20       | 20            | 9; 14,6;<br>20 | 9; 20     | 9; 14,6;<br>20 |         | 9; 20                      | 7,8                   |
| Количество секций в аппаратах, шт              |                            | (см. рис.<br>.2; Д.3) | 3              | 3            | 2 ил         | ли 3           | 2              | 4             |                | 6         |                |         | 1                          | 6                     |
| Длина оребренных<br>труб, м                    |                            | 4; 8                  |                | 4            | 1            | 2              | 6              | 8             |                | 6         |                | 8       | 1,5; 3                     | 6                     |
| Число рядов труб в<br>секции                   | 4;6;8                      | 4;6                   | 4;6;8          | 4            |              | 6              | 4              | 6             | 4; 6; 8        | 4; 6      | 4; 6; 8        | 4; 6    | 4; 6; 8                    | 8                     |
| Число ходов по<br>трубному<br>пространству     | 1;2;2a<br>3;3a;4<br>4a;6;8 | ***                   | 1;2;3<br>4;6   | 9*           |              | 1 2            |                | 3             |                | 1; 2; 2a  | ; 4; 4a; 8     |         | 1; 2; 3; 4; 6; 8           | 1                     |
| Количество<br>вентиляторов в<br>аппаратах, шт  | 1                          | ;2                    | 1;2            | 1            | :            | 2 1            |                | 4             |                | 1         |                | 2       | 1; 2                       | 1                     |
| Масса аппаратов,<br>кг,не более                | См. т                      | аб. Г.1               | См.<br>таб.Г.2 | 16 000       | 33 590       | 35 710         | 23 900         | 39 160        |                | См. та    | эб. Г.З        |         | См. таб. Г.4               | 50 000                |

Таб. 75. Основные параметры вентиляторов.

|                                                                                |             |       |              |                     |              | Модифика     | ции аппар | атов     |                 |                     |                       |
|--------------------------------------------------------------------------------|-------------|-------|--------------|---------------------|--------------|--------------|-----------|----------|-----------------|---------------------|-----------------------|
| Параметры                                                                      |             |       |              | пьные - АВГ         |              |              | Зигзаг    | ообразны | e - AB3         | Малопоточные<br>АВМ | Дельтапоточные<br>АВД |
|                                                                                | АВГ<br>2АВГ | АВГ-В | 1АВГ-<br>ВВП | 2АВГ-75<br>2АВГ-100 | АВГ-<br>160Г | 1АВГ-<br>160 | AB3       | 1AB3     | АВЗ-Д<br>2АВЗ-Д | АВМ-Г<br>АВМ-В      | АВОГ-1                |
| Диаметр колеса, м                                                              |             | 2,8   |              | 5                   | 5            | 2,8          | ļ         | 5        | 2,8             | 0,8                 | 5                     |
| Количество<br>лопастей, шт                                                     | 8           |       | 4            | 6                   | 8            |              | 6         | 8        | 6; 4            | 6                   |                       |
| Потребляемая мощ-<br>ность электродвига-<br>телей, кВт, для типов<br>приводов: |             |       |              |                     |              |              |           |          | 3               |                     |                       |
| - T1                                                                           | -           | -     | -            | 37                  | -            | -            | 37        | 37       | -               | -                   | -                     |
| - T2                                                                           | -           | -     | -            | -                   | 75           | -            | 55        | 55       | -               | -                   | -                     |
| - T3                                                                           | -           | -     | -            | -                   | -            | -            | 75        | 75       | -               | -                   | -                     |
| - B1T                                                                          | 22          | 22    | -            | -                   | -            | -            | -         | -        | 22              | -                   | -                     |
| - B2T                                                                          | 30          | 30    | 30           | -                   | -            | 30           | -         | -        | 30              | -                   | -                     |
| - B3T                                                                          | (37)        | (37)  | -            | -                   | -            | -            | -         | -        | -               | -                   | 75                    |
| Частота вращения вала об/мин при потребляемой мощности, кВт:                   |             | (2.7) |              |                     |              |              |           |          |                 |                     |                       |
| 22; 30; 37                                                                     | 428         | 42    | 28           | 250                 | 250          | -            | 2!        | 50       | -               | -                   | -                     |
| 37; 55; 75                                                                     | -           |       | -            | -                   | -            | 428          |           | -        | 428             | -                   | 250                   |
| Масса колеса<br>вентилятора, кг,<br>не более                                   | 220         |       | 440          | 530                 | 220          | 5:           | 30        | 220      | 13              | 530                 |                       |

<sup>\* -</sup> число потоков; \*\* - Температурные пределы элементов секций, работающих под давлением (температура продукта): нижний — минус 40°C; верхний — плюс 400°C; \*\*\* - Количество ходов по трубам: четырехрядных секций — 1; 2; 4 и шестирядных секций — 1; 2; 3; 6.

Допускается применение других вентиляторов и электродвигателей, не ухудшающих работоспособность аппаратов.
 Параметры электродвигателя: напряжение питания – 380В; частота тока - 50Гц; исполнение двигателя по взрывозащите (уровень взрывозащиты) – 1ExdIIBT4 (устанавливается заказчиком).

<sup>•</sup> Массы электродвигателей должны соответствовать значениям, указанным в эксплуатационной документации предприятия-изготовителя электродвигателей:

<sup>•</sup> Значение параметра в скобках – допускаемое.

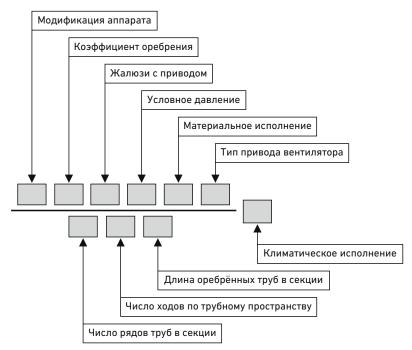



Рис. 44. Схема условного обозначения агрегатов воздушного охлаждения.

- \* условное обозначение жалюзи с ручным приводом Ж, с пневматическим приводом поворота лопаток жалюзи ПЖ, с электромеханическим приводом поворота лопаток ЭЖ.
- При заказе аппарата без жалюзи, без приводов поворота лопаток жалюзи и лопастей вентилятора в условном обозначении Ж, ПЖ и т.д. опускаются.
- Допускается условное обозначение аппарата приводить строкой через дробь (слеш).
- Наличие остальных сборочных единиц в аппарате, а так же отсутствие в секции змеевика подогрева продукта указываются текстом после условного обозначения аппарата (дополнительная информация).

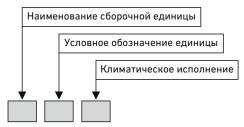



Рис. 45. Схема условного обозначения сборочных единиц (комплектующих).

Таб. 76. Примеры применения секций по давлению в зависимости от материального исполнения и рабочей температуры.

|          |     |                                                     |             |      |           | Матери     | альное ис | полнение    | секций |            |     |      |      |      |
|----------|-----|-----------------------------------------------------|-------------|------|-----------|------------|-----------|-------------|--------|------------|-----|------|------|------|
| Давление |     |                                                     | 51; Б2; Б2. |      |           |            | Б3;       | Б3.1; Б4; Е | 54.1   |            |     | Б5;  |      |      |
| условное |     |                                                     |             | Te   | мпература | а деталей, |           | цих под да  |        | *С, не бол |     |      |      |      |
| МПа      | 100 | 150 200 250 300 100 150 200 250 300 100 150 200 250 |             |      |           |            |           |             |        |            |     |      | 250  |      |
|          |     | Давление рабочее наибольшее, МПа                    |             |      |           |            |           |             |        |            |     |      |      |      |
| 0,6      | 0,6 | 0,57                                                | 0,56        | 0,54 | 0,50      | 0,6        | 0,58      | 0,56        | 0,54   | 0,52       | 0,6 | 0,57 | 0,56 | 0,54 |
| 1,6      | 1,6 | 1,51                                                | 1,5         | 1,44 | 1,33      | 1,6        | 1,54      | 1,49        | 1,44   | 1,38       | 1,6 | 1,51 | 1,5  | 1,44 |
| 2,5      | 2,5 | 2,36                                                | 2,33        | 2,25 | 2,08      | 2,5        | 2,4       | 2,32        | 2,25   | 2,15       | 2,5 | 2,36 | 2,33 | 2,25 |
| 4,0      | 4,0 | 3,78                                                | 3,74        | 3,60 | 3,34      | 4,0        | 3,84      | 3,72        | 3,6    | 3,44       | 4,0 | 3,78 | 3,74 | 3,60 |
| 6,3      | 6,3 | 6,05                                                | 6,00        | 5,76 | 5,33      | 6,3        | 6,15      | 5,95        | 5,7    | 5,5        | 6,3 | 6,05 | 6,00 | 5,76 |



Таб. 77. Поверхность теплообмена и количество оребренных труб аппаратов АВГ и 2АВГ.

| Матели     | иальное    |               | 14 1             |      | Кол-в | о труб  |       |       |           | Пове      | рхность т | еплообме | на, м²    |           |       |
|------------|------------|---------------|------------------|------|-------|---------|-------|-------|-----------|-----------|-----------|----------|-----------|-----------|-------|
| испол      |            | Кол-во        | Коэф-<br>фициент | P 60 | кции  | Рапп    | арате | Дли   | на оребре | енных тру | б 4м      | Дли      | на оребре | енных тру | б 8м  |
| сек        | сций       | рядов<br>труб | оребре-<br>ния   | БСе  | кции  | D dilli | арате | сек   |           | аппа      |           | сек      | ции       | аппа      | рата  |
| АВГ        | 2АВГ       |               | кин              | АВГ  | 2АВГ  | АВГ     | 2АВГ  | АВГ   | 2АВГ      | АВГ       | 2АВГ      | АВГ      | 2АВГ      | АВГ       | 2АВГ  |
|            |            |               | 9                | 94   | 134   | 282     | 268   | 290   | 415       | 875       | 830       | 590      | 840       | 1 770     | 1 680 |
| Б1         |            | 4             | 14,6             | 82   | _     | 246     | _     | 415   | _         | 1 250     | _         | 830      | _         | 2 500     | _     |
| Б2<br>Б2.1 | Б1<br>Б2   |               | 20               | 82   | 122   | 246     | 244   | 535   | 775       | 1 600     | 1 550     | 1 070    | 1 570     | 3 200     | 3 140 |
| Б2.1       | Б2.1       |               | 9                | 141  | 201   | 423     | 402   | 440   | 620       | 1 320     | 1 240     | 880      | 1 260     | 2 640     | 2 520 |
| Б3.1       | Б3         | 6             | 14,6             | 123  | _     | 369     | _     | 620   | _         | 1 870     | _         | 1 260    | _         | 3 860     | _     |
| Б4         | Б3.1       |               | 20               | 123  | 183   | 369     | 366   | 800   | 1 160     | 2 400     | 2 320     | 1 600    | 2 355     | 4 800     | 4 710 |
| Б4.1<br>Б5 | Б4<br>Б5.1 |               | 9                | 188  | _     | 564     | _     | 580   | _         | 1 740     | _         | 1 165    | _         | 3 600     | _     |
| Б5.1       | D3.1       | 8             | 14,6             | 164  | _     | 492     | _     | 830   | _         | 2 560     | _         | 1 700    | _         | 5 100     | _     |
|            |            |               | 20               | 164  | _     | 492     | _     | 1 070 | _         | 3 200     | _         | 2 140    | _         | 6 400     | _     |
|            |            | ,             | 9                | 1    | 83    | _       | 249   | _     | 255       | _         | 765       | _        | 520       | _         | 1 560 |
|            |            | 4             | 20               | _    | 75    | _       | 225   | _     | 475       | _         | 1 425     | _        | 965       | _         | 2 895 |
| _          | – Б5       |               | 9                | -    | 124   | _       | 372   | _     | 385       | _         | 1 155     | _        | 755       | _         | 2 325 |
|            |            | 6             | 20               | ı    | 112   | -       | 336   | _     | 710       | _         | 2 130     | _        | 1 440     | _         | 4 320 |

Примечание: Предельное отклонение площади поверхности теплообмена от номинальной – минус 5%.

Таб. 78. Поверхность теплообмена и количество оребренных труб аппаратов АВГ и 2АВГ.

|              | Кол-в    | о труб     | Поверхность теплообмена, м² |              |                      |       |                 |              |                |          |  |  |  |  |
|--------------|----------|------------|-----------------------------|--------------|----------------------|-------|-----------------|--------------|----------------|----------|--|--|--|--|
| Кол-во рядов |          |            |                             | Длина оребре | енных труб 4м        | 1     |                 | Длина оребре | ренных труб 8м |          |  |  |  |  |
| труб         | В секции | в аппарате | нару                        | жная         | внутр                | енняя | нару            | жная         | внутр          | енняя    |  |  |  |  |
|              |          |            |                             | аппарата     | рата секции аппарата |       | секции аппарата |              | секции         | аппарата |  |  |  |  |
| 4            | 74       | 222        | 297                         | 890          | 31                   | 93    | 602             | 1 805        | 62             | 187      |  |  |  |  |
| 6            | 111      | 333        | 443                         | 1 330        | 46                   | 138   | 900             | 2 700        | 93             | 280      |  |  |  |  |
| 8            | 148      | 444        | 587                         | 1 760        | 61                   | 183   | 1 196 3 590     |              | 124            | 372      |  |  |  |  |

Примечание: Предельное отклонение площади поверхности теплообмена от номинальной – минус 5%.

Таб. 79. Поверхность теплообмена и количество оребренных труб аппаратов АВГ и 2АВГ.

| Кол-во | Коэф-           |       |      | Кол-в | о оребрё | нных тр | уб, шт. |       |        |       |       | Пов   | ерхность | теплооб | бмена, м2 | 2      |        |
|--------|-----------------|-------|------|-------|----------|---------|---------|-------|--------|-------|-------|-------|----------|---------|-----------|--------|--------|
| рядов  | фициент оребре- | в сеі | кции | в апп | арате    | в се    | кции    | в апп | арате  | сек   | ции   | аппа  | рата     | сек     | ции       | аппа   | рата   |
| труб   | ния             | AB3   | 1AB3 | AB3   | 1AB3     | АВЗ-Д   | 2АВЗ-Д  | АВЗ-Д | 2АВЗ-Д | AB3   | 1AB3  | AB3   | 1AB3     | АВЗ-Д   | 2АВЗ-Д    | АВЗ-Д  | 2АВЗ-Д |
|        | 9               | 94    | 80   | 564   | 480      | 92      | 80      | 552   | 480    | 440   | 375   | 2 650 | 2 250    | 565     | 500       | 3 400  | 3 000  |
| 4      | 14,6            | 82    | _    | 246   | _        | 80      | _       | 480   | -      | 620   | _     | 3 750 | _        | 800     | _         | 4 800  | -      |
|        | 20              | 82    | 122  | 246   | 244      | 80      | 72      | 480   | 432    | 770   | 675   | 4 600 | 4 050    | 1 000   | 930       | 6 000  | 5 560  |
|        | 9               | 141   | 201  | 423   | 402      | 139     | 121     | 834   | 726    | 665   | 570   | 4 000 | 3 420    | 850     | 760       | 5 100  | 4 560  |
| 6      | 14,6            | 123   | _    | 369   | _        | 121     | _       | 726   | _      | 940   | _     | 5 650 | _        | 1 200   | _         | 7 200  | _      |
|        | 20              | 123   | 183  | 369   | 366      | 121     | 109     | 726   | 654    | 1 150 | 1 025 | 6 900 | 6 150    | 1 500   | 1 400     | 9 000  | 8 400  |
|        | 9               | 188   | _    | 564   | _        | 186     | _       | 1 116 | _      | 885   | _     | 5 300 | _        | 1 140   | _         | 6 800  | _      |
| 8      | 14,6            | 164   | _    | 492   | _        | 162     | _       | 972   | -      | 1 250 | _     | 7 500 | _        | 1 600   | _         | 9 600  | -      |
|        | 20              | 164   | _    | 492   | _        | 162     | _       | 972   | _      | 1 540 | _     | 9 250 | _        | 2 000   | _         | 12 000 | _      |

Примечание: Предельное отклонение площади поверхности теплообмена от номинальной –  $\pm 5\%$ .

Таб. 80. Поверхность теплообмена и количество оребренных труб в аппаратах АВМ.

| Кол-во рядов труб |                       |                                        | Поверхность теплообмена, м²  |     |  |  |
|-------------------|-----------------------|----------------------------------------|------------------------------|-----|--|--|
|                   | Коэффициент оребрения | Кол-во оребренных труб в аппарате, шт. | При длине оребренных труб, м |     |  |  |
|                   |                       | aapa10, 2.1.                           | 1,5                          | 3,0 |  |  |
| ,                 | 9                     | 94                                     | 105                          | 220 |  |  |
| 4                 | 20                    | 82                                     | 185                          | 385 |  |  |
| ,                 | 9                     | 141                                    | 160                          | 325 |  |  |
| 6                 | 20                    | 123                                    | 280                          | 580 |  |  |
| 8                 | 9                     | 188                                    | 210                          | 440 |  |  |
|                   | 20                    | 164                                    | 375                          | 775 |  |  |

Примечание: Предельное отклонение площади поверхности теплообмена от номинальной – минус 5%.

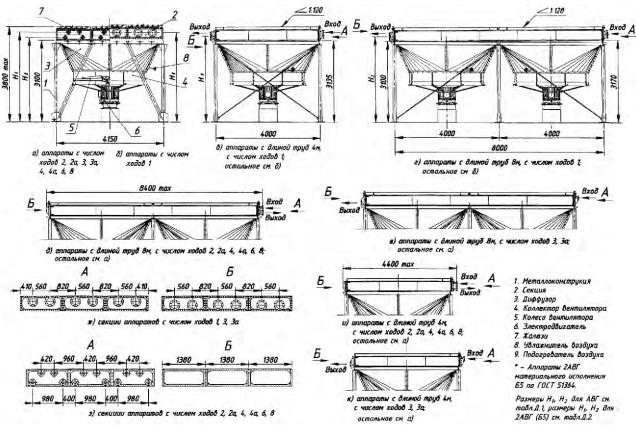



Рис. 46. Схема условного обозначения сборочных единиц (комплектующих).

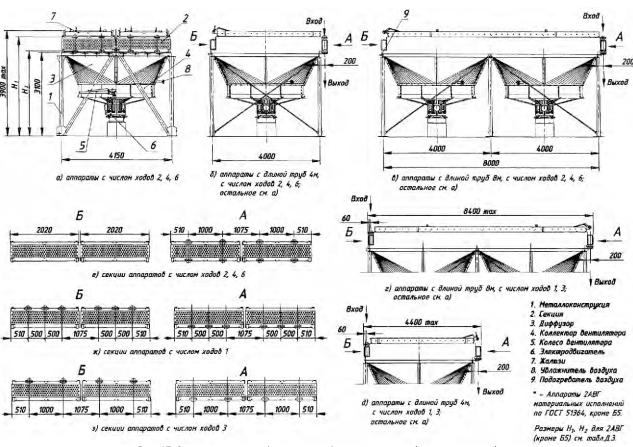



Рис. 47. Схема условного обозначения сборочных единиц (комплектующих).



Таб. 81. Диаметры штуцеров, габаритные и присоединительные размеры аппаратов АВГ.

|                  | Коэффициент<br>оребрения, ф | Число ходов по | Условный ди | іаметр, Ду |        |        |  |
|------------------|-----------------------------|----------------|-------------|------------|--------|--------|--|
| Число ходов труб |                             | трубам         | Вход        | Выход      | Н1, мм | Н2, мм |  |
|                  | 9                           | 1              | 150         |            | 3 255  |        |  |
|                  |                             | 2              | 80          |            | 3 305  | 3 225  |  |
|                  |                             | 2a             | 125         | 50         | 3 285  | 3 205  |  |
| ,                |                             | 4              | 50          |            | 3 320  | 3 210  |  |
| 4                |                             | 1              | 150         | )          | 3 255  |        |  |
|                  | 1// 20                      | 2              | 80          |            | 3 325  | 3 255  |  |
|                  | 14,6; 20                    | 2a             | 80          | 50         | 3 300  | 3 205  |  |
|                  |                             | 4              | 50          |            | 3 340  | 3 210  |  |
|                  |                             | 1              | 200         |            | 3 280  |        |  |
|                  |                             | 2              | 100         | )          | 3 365  | 3 230  |  |
|                  | 0                           | 2a             | 150         | 80         | 3 355  | 3 225  |  |
|                  | 9                           | 3              | 80          |            | 3 390  | 3 220  |  |
|                  |                             | 3a             | 125         | 50         | 3 380  | 3 205  |  |
| ,                |                             | 6              | 50          |            | 3 405  |        |  |
| 6                | 14,6; 20                    | 1              | 200         | )          | 3 280  |        |  |
|                  |                             | 2              | 100         |            | 3 420  | 3 230  |  |
|                  |                             | 2a             | 125         | 80         | 3 355  | 3 255  |  |
|                  |                             | 3              | 80          |            | 3 430  | 3 220  |  |
|                  |                             | 3a             | 80          | 50         | 3 425  | 2.205  |  |
|                  |                             | 6              | 50          |            | 3 425  | 3 205  |  |
|                  | 9                           | 1              | 200         |            | 3 280  |        |  |
|                  |                             | 2              | 125         |            | 3 420  | 3 240  |  |
| 8                |                             | 2a             | 150         | 125        | 3 410  | 3 245  |  |
|                  |                             | 4              | 80          |            | 3 480  | 3 220  |  |
|                  |                             | 4a             | 150         |            | 3 440  | 2 205  |  |
|                  |                             | 8              | 50          |            | 3 495  | 3 205  |  |
|                  | 14,6; 20                    | 1              | 200         |            | 3 280  |        |  |
|                  |                             | 2              | 125         |            | 3 510  | 3 240  |  |
|                  |                             | 2a             | 150         | 80         | 3 445  | 3 225  |  |
|                  |                             | 4              | 80          |            | 3 530  | 3 220  |  |
|                  |                             | 4a             | 125 50      |            | 3 475  | 3 205  |  |
|                  |                             | 8              | 50          |            | 3 545  | 3 200  |  |

Таб. 82. Диаметры штуцеров, габаритные и присоединительные размеры аппаратов 2 АВГ. Материальное исполнение Б5.

|                  |                          | Диаметр условный<br>Ду, мм | Длина труб, м  |                |                |                |  |  |
|------------------|--------------------------|----------------------------|----------------|----------------|----------------|----------------|--|--|
| Число ходов труб | Число ходов по<br>трубам |                            | L              | 4              | 8              |                |  |  |
|                  |                          | A),                        | H <sub>1</sub> | H <sub>2</sub> | H <sub>1</sub> | H <sub>2</sub> |  |  |
|                  | 1                        | 150                        | 3 325          | 3 255          | 3 355          | 3 255          |  |  |
| 4                | 2                        | 80                         | 3 325          | 3 225          | 3 325          | 3 225          |  |  |
|                  | 4                        | 50                         | 3 340          | 3 210          | 3 430          | 3 210          |  |  |
| 6                | 1                        | 200                        | 3 400          | 3 280          | 3 430          | 3 280          |  |  |
|                  | 2                        | 100                        | 3 420          | 3 230          | 3 320          | 3 230          |  |  |
|                  | 3                        | 80                         | 3 460          | 3 220          | 3 490          | 3 220          |  |  |
|                  | 4                        | 50                         | 3 445          | 3 205          | 3 445          | 3 205          |  |  |

Таб. 83. Диаметры штуцеров, габаритные и присоединительные размеры аппаратов 2 АВГ. Материальное исполнение Б1, Б2.1, Б2, Б3, Б3.1, Б4, Б4.1, Б5.1.

| Коэффициент<br>оребрения, ф труб | Число | Диаметр         | Количество         |                   | Давление условное, МПа |          |       |       |       |       |       |       |                |
|----------------------------------|-------|-----------------|--------------------|-------------------|------------------------|----------|-------|-------|-------|-------|-------|-------|----------------|
|                                  | ходов | ходов по трубам | условный<br>Ду, мм | Штуцеров в секции |                        | 0,6; 1,6 |       | 2,5   |       | 4     |       | 6,3   |                |
|                                  | труб  |                 |                    | Вход              | Выход                  |          | H₂    | Н,    | H₂    |       |       |       | H <sub>2</sub> |
|                                  |       | 1               | 150                | 3                 | 3                      | 3 530    | 3 150 | 3 540 | 3 140 | 3 560 | 3 140 | 3 595 | 3 105          |
|                                  | 4     | 2               | 125                | 2                 | 2                      | 3 540    | 3 160 | 3 545 | 3 150 | 3 560 | 3 150 | 3 590 | 3 120          |
|                                  |       | 4               | 100                | 2                 | 2                      | 3 530    | 3 165 | 3 545 | 3 150 | 3 560 | 3 150 | 3 570 | 3 140          |
| 9                                |       | 1               | 150                | 3                 | 3                      | 3 650    | 3 150 | 3 660 | 3 140 | 3 680 | 3 140 | 3 715 | 3 105          |
|                                  | 6     | 2               | 150                | 2                 | 2                      | 3 650    | 3 160 | 3 660 | 3 150 | 3 675 | 3 145 | 3 715 | 3 110          |
|                                  | 0     | 3               | 125                | 2                 | 2                      | 3 650    | 3 150 | 3 655 | 3 145 | 3 675 | 3 145 | 3 705 | 3 115          |
|                                  |       | 6               | 100                | 2                 | 2                      | 3 645    | 3 165 | 3 660 | 3 150 | 3 675 | 3 150 | 3 690 | 3 140          |
| 20                               |       | 1               | 150                | 3                 | 3                      | 3 540    | 3 155 | 3 555 | 3 140 | 3 575 | 3 140 | 3 610 | 3 105          |
|                                  | 4     | 2               | 125                | 2                 | 2                      | 3 540    | 3 160 | 3 550 | 3 150 | 3 565 | 3 150 | 3 595 | 3 120          |
|                                  |       | 4               | 80                 | 2                 | 2                      | 3 535    | 3 165 | 3 540 | 3 160 | 3 555 | 3 160 | 3 570 | 3 140          |
|                                  | 6     | 1               | 150                | 3                 | 3                      | 3 670    | 3 150 | 3 680 | 3 140 | 3 705 | 3 140 | 3 740 | 3 105          |
|                                  |       | 2               | 150                | 2                 | 2                      | 3 660    | 3 160 | 3 670 | 3 150 | 3 690 | 3 145 | 3 725 | 3 110          |
|                                  |       | 3               | 125                | 2                 | 2                      | 3 670    | 3 150 | 3 675 | 3 145 | 3 700 | 3 145 | 3 730 | 3 115          |
|                                  |       | 6               | 80                 | 2                 | 2                      | 3 655    | 3 165 | 3 660 | 3 160 | 3 675 | 3 160 | 3 690 | 3 140          |

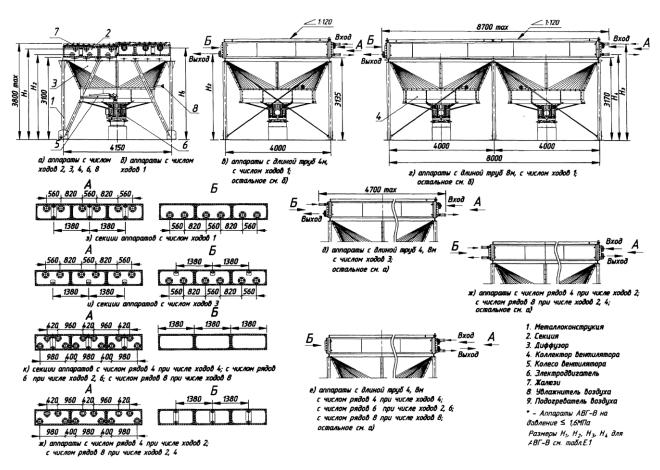



Рис. 48. Аппараты АВГ- В\*.

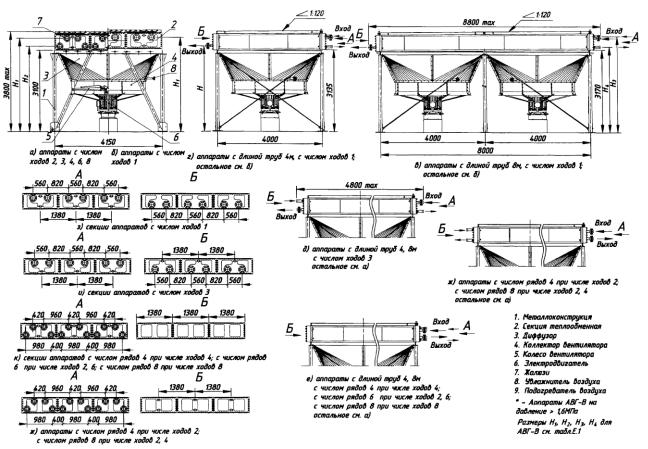
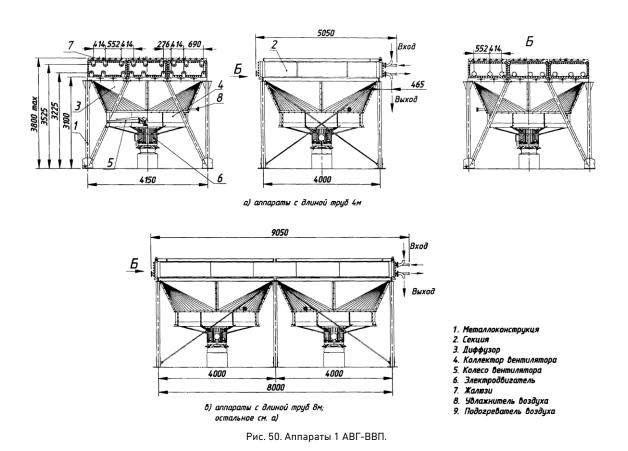




Рис. 49. Аппараты АВГ- В\*.



Отопительное оборудование

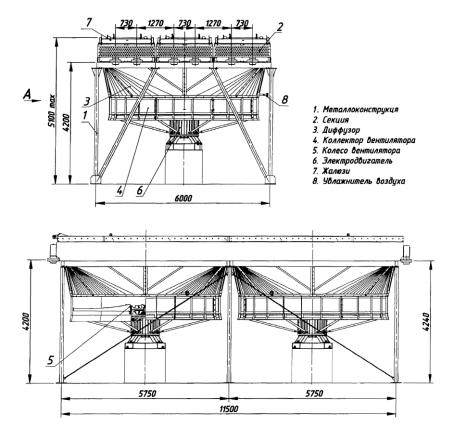



Рис. 51. Аппараты 2 АВГ - 75 и 2АВГ - 100.

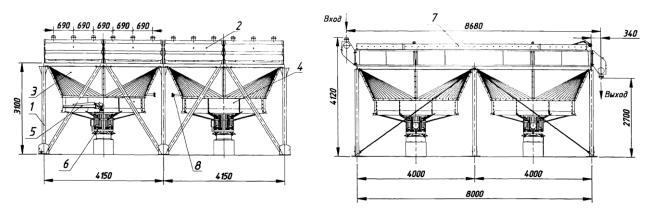



Рис. 52. Аппарат 1 АВГ - 160.

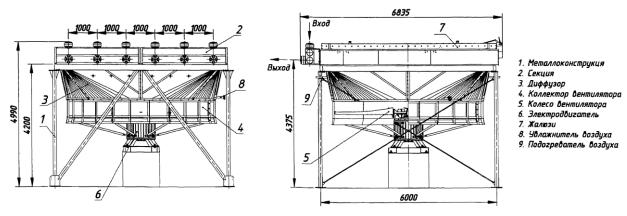
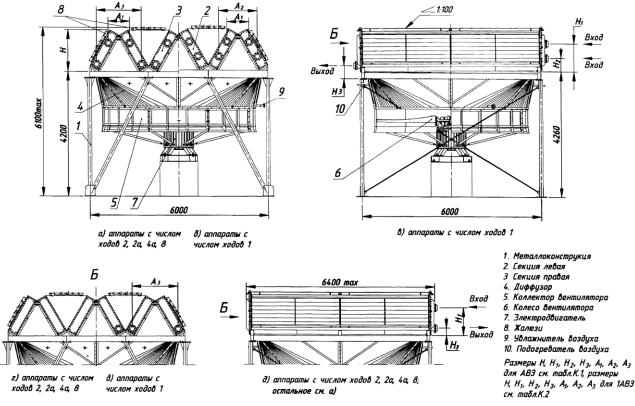
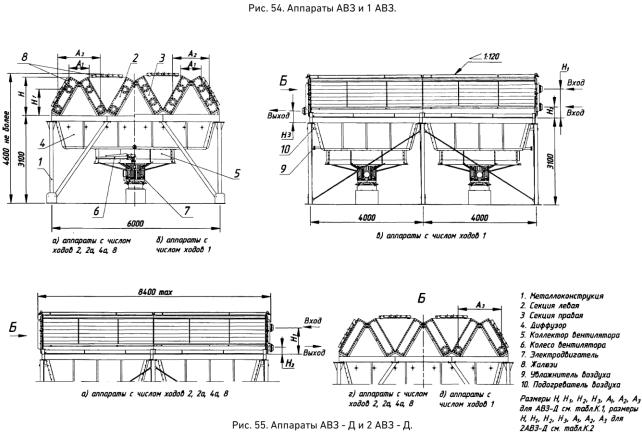





Рис. 53. Аппарат 1 АВГ - 160Г



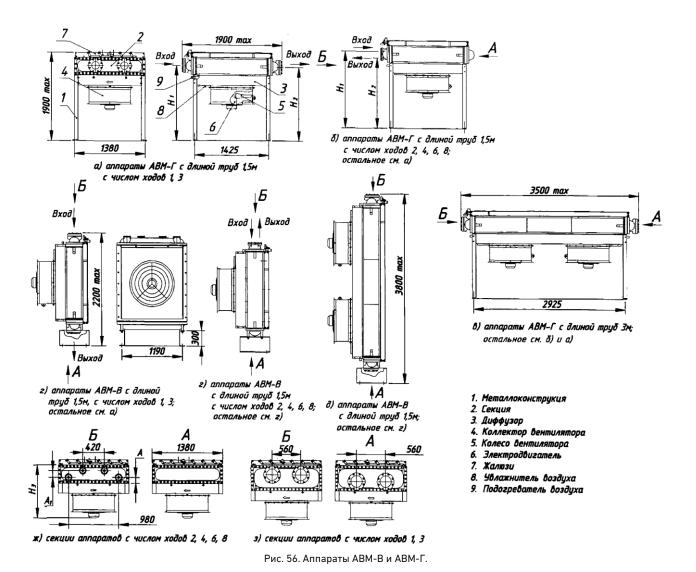




Таб. 84. Диаметры штуцеров, габаритные и присоединительные размеры аппаратов АВГ-В.

| Число рядов труб, z | Число ходов по<br>трубам               | Ду    | H <sub>1</sub> | H <sub>2</sub>         | H <sub>3</sub> | H <sub>4</sub> |
|---------------------|----------------------------------------|-------|----------------|------------------------|----------------|----------------|
|                     | 1                                      | 200   | 3 330          | 3 280                  |                |                |
| 4                   | 2                                      | 125   | 3 370          | 3 240                  | 3 390          | 3 220          |
|                     | 4                                      | 80    | 3 385          | 3 225                  |                |                |
|                     | 1                                      | 200   | 3 420          | 3 280                  |                |                |
| ,                   | 2 150 3 350 3 255<br>3 125 3 460 3 240 | 3 210 |                |                        |                |                |
| 6                   | 3                                      | 125   | 3 460          | 3 240                  | 3 490          | 3 2 1 0        |
|                     | 6                                      | 80    | 3 475          | 3 225                  |                |                |
|                     | 2                                      | 250   | 3 505          | 3 305                  |                |                |
| 0                   | 3                                      | 150   | 3 555          | 505 3 305<br>555 3 255 | 2 210          |                |
| 8                   | 3 150 3 555 3 255<br>4 125 3 570 3 240 | 3 210 |                |                        |                |                |
|                     | 8                                      | 80    | 3 585          | 3 225                  |                |                |

Таб. 85. Диаметры штуцеров, габаритные и присоединительные размеры аппаратов АВЗ и АВЗ-Д.


| 4         1         150         Выход         Н, МИ         11, МИ         12, МИ         13, МИ         13, МИ         14, МИ         12, МИ         13, МИ         14, МИ         12, МИ         13, МИ         14, МИ         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |              | л. Дламетры |      |       | l in inpricoca |        | l pasmeps |        | I      | у <b>д</b> .    |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-------------|------|-------|----------------|--------|-----------|--------|--------|-----------------|--------|
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |              |             |      |       | Н, мм          | Н1, мм | Н2, мм    | Н3, мм | А1, мм | А2, мм          | А3, мм |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | дов груо | ореорения, ф |             | Вход | Выход |                |        |           |        |        | 710 1 290 1 695 |        |
| 4 100   1430   1430   1500   1500   1430   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1 |          |              |             | 1!   | 50    |                |        | 435       | 220    |        | 1 290           | 1 555  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |              |             |      | 1     |                |        |           |        |        |                 |        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 9            |             |      |       | 1 430          |        |           | 195    |        |                 | 1 585  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |              |             |      | 1     |                |        | _         |        |        | _               |        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |              |             |      | 1     |                |        |           | 190    |        |                 | 1 595  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        |              |             | 8    | 80    |                | 1 130  |           |        |        |                 |        |
| 14,6; 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |              |             | 1!   | 50    |                |        | 440       | 220    |        | 1 285           | 1 540  |
| 14,6; 20 4 100 4 100 8 8 80 1140 465  1 200 2 1010 705 3 125 3 200 100 6 8 80 1125 1 200 2 1480 1 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |              | 2           |      | -     |                | 940    |           |        | 700    |                 |        |
| 6    4a   125   80   970   190   665   665     2   200   150   1480   1125   200   230   850     3   125   3a   200   100   1025   210   685     6   8   80   1200   200   510     14,6; 20   3   125   3a   200   100   1500     3   125   3a   200   150   100     14,6; 20   3   125   3a   200   100     14,6; 20   3   125   3a   200   100     14,6; 20   3   125   3a   200   100     1   200   200   200   510     1   200   200   200   510     1   200   200   200   510     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   200   200     1   200   200   |          | 14 6· 20     | 2a          | 200  | 100   | 1 430          | 805    |           | 200    | 860    |                 | 1 565  |
| 8 80 1140 465   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ,0, 20       | 4           | 10   | 00    |                | 1 065  | _         |        | 555    | _               | . 555  |
| 6  1 200 2 200 2 100 1 1010 705 2 20 250 1 150 3 125 3 200 1 100 1 100 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 1025 1 |          |              | 4a          | 125  | 80    |                | 970    |           | 190    | 665    |                 | 1 575  |
| 6    Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |              | 8           | 8    | 10    |                | 1 140  |           |        | 465    |                 | 1 3/3  |
| 6    Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |              | 1           | 21   | nn    |                | 970    | 460       | 255    | 740    | 1 260           | 1 470  |
| 6    3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |              | 2           | 21   | 00    |                | 1 010  |           |        | 705    |                 | 1 470  |
| 6    3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 0            | 2a          | 250  | 150   | 1 / 00         | 970    |           | 230    | 850    |                 | 1 495  |
| 6 80 1 200 200 510<br>1 200 200 465 260 760 1 240<br>2 2 250 150 990 465 260 760 1 240<br>1 025 725 725<br>2 3 250 150 1 500 1 160 — 225 815 — 33 200 100 1 045 215 705<br>6 80 1 220 205 545<br>1 200 2 1 025 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 7            | 3           | 1:   | 25    | 1 400          | 1 125  | _         | 220    | 585    | _               | 1 505  |
| 1     200     1 500     990     465     260     760     1 240       14,6; 20     2a     250     150     910     235     860       3a     125     1 160     225     815     -       3a     200     100     1 045     215     705       6     80     1 220     205     545       1     200     990     475     265     780     1 220       2     1 025     750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6        |              | 3a          | 200  | 100   |                | 1 025  |           | 210    | 685    |                 | 1 515  |
| 1 200 2 990 465 260 760 1240 2 2 250 150 150 910 235 860 3 125 3160 - 225 815 - 215 705 6 80 1220 205 545 1 200 2 1025 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              | 6           | 8    | 80    |                | 1 200  |           | 200    | 510    |                 | 1 525  |
| 14,6; 20  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        |              | 1           | 20   | 0.0   |                | 990    | 465       | 260    | 760    | 1 240           | 1 440  |
| 14,6; 20  3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |              | 2           | 21   | UU    |                | 1 025  |           |        | 725    |                 | 1 440  |
| 3     125     1160     —     225     815     —       3a     200     100     1045     215     705       6     80     1220     205     545       1     200     990     475     265     780     1220       2     1025     750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 1// 20       | 2a          | 250  | 150   | 1 500          | 910    |           | 235    | 860    |                 | 1 460  |
| 6     80     1 220     205     545       1     200     475     265     780     1 220       2     1 025     750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 14,6; 20     | 3           | 1:   | 25    | 1 500          | 1 160  | _         | 225    | 815    | _               | 1 475  |
| 1 200 990 475 265 780 1 220 1 025 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |              | 3a          | 200  | 100   |                | 1 045  |           | 215    | 705    |                 | 1 480  |
| 2 200 1 025 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              | 6           | 8    | 0     |                | 1 220  |           | 205    | 545    |                 | 1 490  |
| 2 1 025 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |              | 1           |      | 0.0   |                | 990    | 475       | 265    | 780    | 1 220           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              | 2           | 20   | υu    |                | 1 025  |           | _      | 750    |                 | 1 400  |
| 2a 300 200 910 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | _            | 2a          | 300  | 200   | 4 500          | 910    |           |        | 850    |                 |        |
| 9 4 125 1 500 1 160 - 240 635 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 9            | 4           | 1:   | 25    | 1 500          | 1 160  | _         | 240    | 635    | _               | 1 420  |
| 4a 250 100 1 045 215 735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |              | 4a          | 250  | 100   |                | 1 045  |           | 215    | 735    |                 | 1 440  |
| 8 80 1 220 210 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        |              | 8           | 8    | 0     |                | 1 220  |           | 210    | 585    |                 | 1 445  |
| 8 1 1 005 480 265 805 1195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8        |              | 1           |      |       |                | 1 005  | 480       | 265    | 805    | 1 195           |        |
| 200 1 040 775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |              | 2           | 20   | UU    |                | 1 040  |           | _      | 775    |                 | 1 360  |
| 2a 300 200 920 865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |              | 2a          | 300  | 200   |                | 920    |           |        | 865    |                 |        |
| 14,6; 20 4 150 1 180 — 240 675 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 14,6; 20     | 4           | 1!   | 50    | 1 500          | 1 180  | _         | 240    | 675    | _               | 1 375  |
| 4a 250 100 1 060 220 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |              |             | 250  | 100   |                |        |           |        |        |                 | 1 395  |
| 8 80 1 240 210 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |              |             | 8    | 1     |                | 1 240  |           |        |        |                 | 1 400  |

Таб. 86. Диаметры штуцеров, габаритные и присоединительные размеры аппаратов 1 АВЗ и 2АВЗ-Д.

| Число ходов  | Число ходов | Условный, | циаметр, Ду | Н, мм | Н1, мм | Н2, мм | Н3, мм | А1, мм | А2, мм | А3, мм |
|--------------|-------------|-----------|-------------|-------|--------|--------|--------|--------|--------|--------|
| труб по<br>4 | по трубам   |           | Выход       | П, ММ | П1, ММ | п2, мм | пэ, мм | AI, MM | AZ, MM | АЗ, ММ |
|              | 1           | 1         | 50          |       | 925    | 440    | 220    | 715    | 1 285  | 1 540  |
|              | 2           | '         |             |       | 940    |        | 220    | 700    |        | 1 340  |
|              | 2a          | 200       | 100         | 1 370 | 805    |        | 195    | 860    |        | 1 565  |
| 4            | 4           | 1         | 00          | 1 370 | 1 065  | -      |        | 555    | _      | 1 303  |
|              | 4a          | 125       | 80          |       | 970    |        | 190    | 665    |        | 1 575  |
|              | 8           | 8         | 0           |       | 1 140  |        |        | 4 654  |        | 1 3/3  |
|              | 1           | 2         | 00          |       | 970    | 465    | 260    | 760    | 1 240  | 1 440  |
|              | 2           | 2         | 00          |       | 1 010  |        | 200    | 725    |        | 1 440  |
| 6            | 2a          | 250       | 150         | 1 440 | 870    |        | 235    | 860    |        | 1 460  |
| 0            | 4           | 1         | 25          | 1 440 | 1 125  | _      | 225    | 615    | _      | 1 475  |
|              | 4a          | 200       | 100         |       | 1 025  |        | 215    | 705    |        | 1 480  |
|              | 8           | 3         | 0           |       | 1 200  |        | 205    | 545    |        | 1 490  |

Таб. 87. Диаметры штуцеров, габаритные и присоединительные размеры аппаратов АВМ-В и АВМ-Г.

| Число рядов<br>труб, z | Коэффициент<br>оребрения | Число ходов по<br>трубам | Ду  | Н,    | H <sub>2</sub> | H <sub>3</sub> | А   | A <sub>1</sub> |
|------------------------|--------------------------|--------------------------|-----|-------|----------------|----------------|-----|----------------|
|                        |                          | 1                        | 150 | 1 435 | 1 410          |                | 155 | _              |
| 4                      |                          | 2                        | 80  | 1 460 | 1 380          | 1 115          | 125 | 80             |
|                        |                          | 4                        | 50  | 1 475 | 1 365          |                | 11  | 10             |
|                        |                          | 1                        | 200 | 1 485 | 1 435          |                | 180 | _              |
| ,                      |                          | 2                        | 100 | 1 520 | 1 385          | 1 195          | 130 | 135            |
| 6                      | 9                        | 3                        | 80  | 1 545 | 1 375          | 1 175          | 120 | _              |
|                        |                          | 6                        | 50  | 1 560 | 1 360          |                | 105 | 200            |
|                        |                          | 1                        | 200 | 1 575 | 1 435          |                | 180 | _              |
| 8                      |                          | 2                        | 125 | 1 575 | 1 395          | 1 285          | 140 | 180            |
| 0                      |                          | 4                        | 80  | 1 625 | 1 385          | 1 205          | 120 | 240            |
|                        |                          | 8                        | 50  | 1 650 | 1 360          |                | 105 | 290            |
|                        |                          | 1                        | 150 | 1 455 | 1 410          |                | 155 | _              |
| 4                      |                          | 2                        | 80  | 1 480 | 1 380          | 1 135          | 125 | 100            |
|                        |                          | 4                        | 50  | 1 495 | 1 365          |                | 110 | 130            |
|                        |                          | 1                        | 200 | 1 525 | 1 435          |                | 180 | _              |
| 6                      |                          | 2                        | 100 | 1 575 | 1 385          | 1 235          | 130 | 190            |
| 0                      | 20                       | 3                        | 80  | 1 585 | 1 375          | 1 235          | 120 | _              |
|                        |                          | 6                        | 50  | 1 600 | 1 360          |                | 105 | 240            |
|                        |                          | 1                        | 200 | 1 625 | 1 435          |                | 180 | _              |
| 8                      |                          | 2                        | 125 | 1 665 | 1 395          | 1 335          | 140 | 270            |
| 0                      |                          | 4                        | 80  | 1 695 | 1 385          | 1 333          | 120 | 310            |
|                        |                          | 8                        | 50  | 1 700 | 1 360          |                | 225 | 315            |



2000 2000 1205

900 6610

1. Металлоконструкия 2. Секция теплообненная 3. Лиффизор 4. Коллектор Дентильтора 6. Злектройигатель 7. Халязи 7. Подогредитель воздуха 9. Подогредитель воздуха 9. Подогредитель воздуха 9. Подогредитель воздуха 9. Подогредитель воздуха

Рис. 57. Аппараты АВОГ-1.

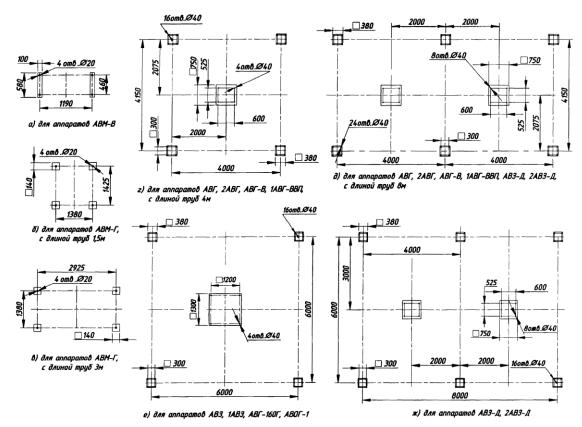



Рис. 58. Расположение отверсий под фундаментальные блоки.

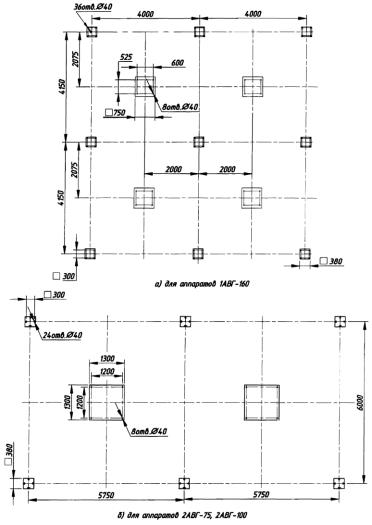



Рис. 59. Расположение отверстий под фундаментальные блоки.





KBp - 15 KBp - 15G KBp - 20 KBp - 20G KBp - 40 KBp - 40G



# Основные преимущества

#### 1. Простой монтаж

Котёл оснащён дном и регулируемыми опорами, что позволяет устанавливать котёл без дополнительной подготовки пола и экономить до 15000 рублей на монтаже.

#### 2. Безопасность

Рабочее давление 3 бара, котёл оснащён каркасом повышенной жёсткости, исключающий деформацию корпуса при превышении давления теплоносителя.

#### 3. Конструкция котла разборная

Сезонная чистка котла по дымовой части производится без слива теплоносителя и отключения от системы отопления. Лёгкая замена комплектующих.

#### 4. Удобная закладка топлива

Загрузочная дверь большего размера. Дверь выполнена с отражателем и теплоизоляцией, позволяет с большим удобством загружать топливо и чистить котёл.

# 🗸 Общие сведения

Котлы «Медведь» на твердом топливе серии КВр-ХХ (далее котлы) предназначены для обогрева различных помещений, оснащенных системой центрального отопления, в которой могут быть подключены параллельно котлы (дизельные, газовые, электрические), радиаторы, бойлер нагревания воды для бытовых целей, теплые полы, или калорифер, либо все вместе. Котлы предназначены для открытых и закрытых систем, как с естественной циркуляцией, так и с принудительной.

Бывает два вида котлов: дровяные и универсальные.

# Технические характеристики

Таб. 73. Технические характеристики котлов КВр.

| Параметры                                             | KBp - 15 | KBp - 20                             | KBp - 40 | KBp - 15G | KBp - 20G                              | KBp - 40G |
|-------------------------------------------------------|----------|--------------------------------------|----------|-----------|----------------------------------------|-----------|
| Мощность котла, кВт                                   | 15       | 20                                   | 40       | 15        | 20                                     | 40        |
| Используемое топливо                                  |          | ные отходы, опило<br>дуемая влажност |          |           | ные брикеты, дров<br>цы, опилочные бри |           |
| Отапливаемая площадь*, м²                             | 75-170   | 110-220                              | 200-450  | 75-170    | 100-220                                | 200-450   |
| Продолжительность сгорания закладки топлива**, ч      |          | От 6 до 25                           |          |           | От 6 до 96                             |           |
| Объем топки, м <sup>3</sup>                           | 0,15     | 0,21                                 | 0,33     | 0,12      | 0,18                                   | 0,28      |
| Объем загружаемого топлива (дрова), кг                | 30       | 50                                   | 90       | 27        | 47                                     | 85        |
| Объем загружаемого топлива (уголь), кг                | -        | -                                    | -        | 58        | 100                                    | 180       |
| Отапливаемый объем помещения, м <sup>3</sup>          | 300-510  | 480-660                              | 600-1350 | 225-510   | 300-600                                | 600-1350  |
| Максимальная длина дров, см                           | 35       | 40                                   | 45       | 35        | 40                                     | 45        |
| Количество воды в котле, л                            | 30       | 38                                   | 45       | 30        | 38                                     | 45        |
| Расход теплоносителя максимальный, куб/ч              | 0,375    | 0,5                                  | 1        | 0,375     | 0,5                                    | 1         |
| кпд, %                                                | 91       | 91                                   | 91       | 91        | 91                                     | 91        |
| Максимальное давление теплоносителя в котле, бар      | -        | -                                    | _        | 3         | 3                                      | 3         |
| Разрежение за котлом, Па                              | -        | -                                    | -        | 20-30     | 20-30                                  | 20-30     |
| Характеристики питающей сети для вентилятора котла, В | -        | _                                    | _        | 220       | 220                                    | 220       |
| Потребляемая мощность вентилятора, Вт                 | -        | -                                    | -        | 23        | 23                                     | 23        |

<sup>\*</sup>При высоте потолка 3 метра и утепленности помещения по нормам и правилам местной климатической зоны.

<sup>\*\*</sup> Продолжительность горения закладки топлива при работе котла на полную мощность зависит от его качества, внутренней и внешней температуры, степени утепленности здания и других факторов.



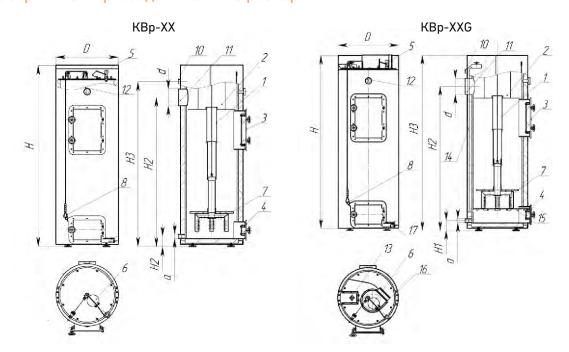
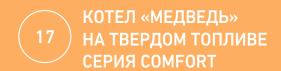



Рис. 44. Габаритные и присоединительные размеры котлов КВр (1 — телескопическая труба подачи воздуха, 2 — камера подогрева воздуха, 3 — проем для загрузки дров, 4 — проем для удаления золы, 5 — терморегулятор, 6 — устройство для регулирования подачи воздуха, 7 — распределитель воздуха, 8 — трос, 10 — патрубок подачи воды, 11 — дымоход для отвода дымовых газов, 12 — термоманометр, 13 — регулятор подачи воздуха под колосниковую решётку, 14 — воздуховод, 15 — колосниковая решётка, 16 — воздушный короб с вентилятором).

Таб. 74. Габаритные и присоединительные размеры котлов КВр.

| Параметры                                                | KBp - 15 | KBp - 20 | KBp - 40    | KBp - 15G    | KBp - 20G | KBp - 40G |
|----------------------------------------------------------|----------|----------|-------------|--------------|-----------|-----------|
| Размеры присоединительных патрубков (а)                  |          |          | Ду 32, (Муф | ота G1 1/4") |           |           |
| Диаметр патрубка дымовой трубы, наружный диаметр (d), мм | 150      | 180      | 200         | 150          | 180       | 200       |
| Размеры загрузочного проема, мм                          | 232x390  | 232x390  | 232x390     | 232x390      | 232x390   | 232x390   |
| Масса, кг                                                | 230      | 270      | 320         | 230          | 270       | 320       |
| Габаритные размеры, мм                                   |          |          |             |              |           |           |
| Н                                                        | 1780     | 1920     | 1920        | 1780         | 1920      | 2100      |
| D                                                        | 550      | 620      | 730         | 550          | 620       | 620       |
| H1                                                       | 118      | 118      | 118         | 118          | 118       | 118       |
| H2                                                       | 1440     | 1550     | 1550        | 1440         | 1550      | 1730      |
| Н3                                                       | 1624     | 1730     | 1730        | 1624         | 1730      | 1910      |


# **Автоматика**

Контроллер ST-22N управляет подачей воздуха с помощью дутьевого вентилятора, который, в свою очередь, в автоматическом режиме за счёт отключения и включения поддерживает постоянную температуру теплоносителя в системе отопления. Также данная автоматика позволяет поддерживать климат в помещении в более стабильном температурном режиме, увеличивает длительность горения от 10 до 20% и как следствие — экономит топливо! При установке модуля автоматики в системе отопления должен быть установлен циркуляционный насос.

Контроллер ST-81 так же обеспечивает поддержание заданной температуры теплоносителя и выполняет функцию управления подачей воздуха с помощью вентилятора котла. Дополнительно может управлять насосом циркуляции воды системы отопления и насосом горячего водоснабжения. Существует возможность выбора одного из четырех режимов работы насосов: отопление дома, приоритет бойлера, параллельные насосы, летний режим.

Котельное оборудование — 65





Comfort - 8 Comfort - 8G Comfort - 10 Comfort - 10G Comfort - 15 Comfort - 15G Comfort - 20 Comfort - 20G Comfort - 30 Comfort - 30G Comfort - 40 Comfort - 40G



# Основные преимущества

#### 1. Простой монтаж

Котёл оснащён дном и регулируемыми опорами, что позволяет устанавливать котёл без дополнительной подготовки пола и экономить до 15000 рублей на монтаже.

#### 2. Безопасность

Рабочее давление 3 бара, котёл оснащён каркасом повышенной жёсткости, исключающий деформацию корпуса при превышении давления теплоносителя.

#### 3. Конструкция котла разборная

Сезонная чистка котла по дымовой части производится без слива теплоносителя и отключения от системы отопления. Лёгкая замена комплектующих.

### 4. Удобная закладка топлива

Загрузочная дверь большего размера. Дверь выполнена с отражателем и теплоизоляцией, позволяет с большим удобством загружать топливо и чистить котёл.

Общие сведения

Котлы «Медведь» на твердом топливе серии Comfort-XX (далее котлы) предназначены для обогрева различных помещений, оснащенных системой центрального отопления, в которой могут быть подключены параллельно котлы (дизельные, газовые, электрические), радиаторы, бойлер нагревания воды для бытовых целей, теплые полы, или калорифер, либо все вместе. Котлы предназначены для открытых и закрытых систем, как с естественной циркуляцией, так и с принудительной.

Бывает два вида котлов: дровяные и универсальные.

# Технические характеристики

Таб. 75. Технические характеристики дровяной версии Comfort-XX.

| Параметры                                        | Comfort - 8 | Comfort - 10      | Comfort - 15      | Comfort - 20     | Comfort - 30     | Comfort - 40 |
|--------------------------------------------------|-------------|-------------------|-------------------|------------------|------------------|--------------|
| Мощность котла, кВт                              | 8           | 10                | 15                | 20               | 30               | 40           |
| Используемое топливо                             | Дрова       | , древесные отход | ды, опилочные брі | икеты, рекоменду | емая влажность 1 | 5-30%        |
| Отапливаемая площадь*, м²                        | 40-90       | 50-110            | 75-170            | 110-220          | 150-330          | 200-450      |
| Продолжительность сгорания закладки топлива**, ч |             |                   | От 6              | до 31            |                  |              |
| Отапливаемый объем помещения, м <sup>3</sup>     | 120-270     | 150-330           | 225-510           | 300-600          | 450-990          | 600-1350     |
| Объем топки, м <sup>3</sup>                      | 0,11        | 0,14              | 0,21              | 0,25             | 0,33             | 0,43         |
| Объем загружаемого топлива (дрова), кг           | 24          | 30                | 50                | 60               | 90               | 100          |
| Максимальная длина дров, см                      | 35          | 35                | 40                | 40               | 45               | 45           |
| Количество воды в котле, л                       | 26          | 30                | 38                | 42               | 45               | 50           |
| Расход теплоносителя максимальный, куб/ч         | 0,25        | 0,25              | 0,375             | 0,5              | 0,75             | 1            |
| Максимальное давление теплоносителя в котле, бар | 3           | 3                 | 3                 | 3                | 3                | 3            |
| Разрежение за котлом, Па                         | 20-30       | 20-30             | 20-30             | 20-30            | 20-30            | 20-30        |
| кпд, %                                           | 91          | 91                | 91                | 91               | 91               | 91           |

<sup>\*</sup>При высоте потолка 3 метра и утепленности помешения по нормам и правилам местной климатической зоны



<sup>\*\*</sup> Продолжительность горения закладки топлива при работе котла на полную мощность зависит от его качества, внутренней и внешней температуры, степени утепленности здания и других факторов.

Таб. 76. Технические характеристики универсальной версии Comfort-XXG.

|                                                       | TIVI TECRIFIC Aupur |                   |                   |                   | -               |               |
|-------------------------------------------------------|---------------------|-------------------|-------------------|-------------------|-----------------|---------------|
| Параметры                                             | Comfort - 8G        | Comfort - 10G     | Comfort - 15G     | Comfort - 20G     | Comfort - 30G   | Comfort - 40G |
| Мощность котла, кВт                                   | 8                   | 10                | 15                | 20                | 30              | 40            |
| Используемое топливо                                  | У                   | голь, торфяные бр | оикеты, дрова, др | евесные отходы, о | пилочные брикет | ы             |
| Отапливаемая площадь*, м²                             | 40-90               | 50-110            | 75-170            | 100-220           | 150-330         | 200-450       |
| Продолжительность сгорания закладки топлива**, ч      |                     |                   | От 6 д            | цо 120            |                 |               |
| Объем топки, м <sup>3</sup>                           | 0,08                | 0,11              | 0,18              | 0,22              | 0,28            | 0,38          |
| Объем загружаемого топлива (дрова), кг                | 21                  | 27                | 47                | 57                | 85              | 95            |
| Объем загружаемого топлива (уголь), кг                | 45                  | 58                | 100               | 110               | 180             | 205           |
| Отапливаемый объем помещения, м <sup>3</sup>          | 120-270             | 150-330           | 225-510           | 300-600           | 450-990         | 600-1350      |
| Максимальная длина дров, см                           | 35                  | 35                | 40                | 40                | 45              | 45            |
| Количество воды в котле, л                            | 26                  | 30                | 38                | 42                | 45              | 50            |
| Расход теплоносителя максимальный, куб/ч              | 0,25                | 0,25              | 0,375             | 0,5               | 0,75            | 1             |
| КПД, %                                                | 91                  | 91                | 91                | 91                | 91              | 91            |
| Максимальное давление теплоносителя в котле, бар      | 3                   | 3                 | 3                 | 3                 | 3               | 3             |
| Разрежение за котлом, Па                              | 20-30               | 20-30             | 20-30             | 20-30             | 20-30           | 20-30         |
| Характеристики питающей сети для вентилятора котла, В | 220                 | 220               | 220               | 220               | 220             | 220           |
| Потребляемая мощность вентилятора, Вт                 | 23                  | 23                | 23                | 23                | 25              | 25            |

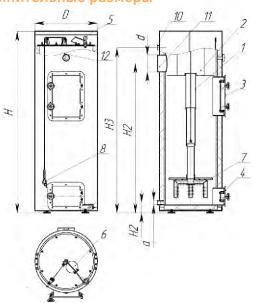



Рис. 45. Габаритные и присоединительные размеры версии Comfort-XX (1 – телескопическая труба подачи воздуха, 2 – камера подогрева воздуха, 3 – проем для загрузки дров, 4 – проем для удаления золы, 5 – терморегулятор, 6 – устройство для регулирования подачи воздуха, 7 – распределитель воздуха, 8 – трос, 10 – патрубок подачи воды, 11 – дымоход для отвода дымовых газов, 12 – термоманометр).

Таб. 77. Габаритные и присоединительные размеры версии Comfort-XX.

| Параметры                                                |         | Comfort - 10 | Comfort - 15 | Comfort - 20 |      | Comfort - 40 |
|----------------------------------------------------------|---------|--------------|--------------|--------------|------|--------------|
| Размеры присоединительных патрубков (а)                  |         |              | Ду 32, (Муф  | ота G1 1/4") |      |              |
| Диаметр патрубка дымовой трубы, наружный диаметр (d), мм | 150     | 150          | 180          | 180          | 200  | 200          |
| Размеры загрузочного проема, мм                          | 232x270 |              |              | 232x390      |      |              |
| Масса, кг                                                | 150     | 230          | 250          | 270          | 320  | 340          |
| Габаритные размеры, мм                                   |         |              |              |              |      |              |
| Н                                                        | 1480    | 1780         | 1920         | 2100         | 1920 | 2100         |
| D                                                        | 550     | 550          | 620          | 620          | 730  | 730          |
| H1                                                       | 118     | 118          | 118          | 118          | 118  | 118          |
| H2                                                       | 1120    | 1440         | 1550         | 1730         | 1550 | 1730         |
| Н3                                                       | 1300    | 1624         | 1730         | 1910         | 1730 | 1910         |

Котельное оборудование 67

<sup>\*</sup>При высоте потолка 3 метра и утепленности помещения по нормам и правилам местной климатической зоны.
\*\*Продолжительность горения закладки топлива при работе котла на полную мощность зависит от его качества, внутренней и внешней температуры, степени утепленности здания и других факторов.

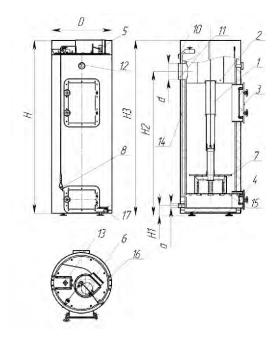



Рис. 46. Габаритные и присоединительные размеры универсальной версии Comfort-XXG (1 — телескопическая труба подачи воздуха, 2 — камера подогрева воздуха, 3 — проем для загрузки дров, 4 — проем для удаления золы, 5 — терморегулятор, 6 — устройство для регулирования подачи воздуха, 7 — распределитель воздуха, 8 — трос, 10 — патрубок подачи воды, 11 — дымоход для отвода дымовых газов, 12 — термоманометр, 13 — регулятор подачи воздуха под колосниковую решётку, 14 — воздуховод, 15 — колосниковая решётка, 16 — воздушный короб с вентилятором).

Таб. 78. Габаритные и присоединительные размеры универсальной версии Comfort-XXG.

| Параметры                                                | Comfort - 8G | Comfort - 10G | Comfort - 15G | Comfort - 20G | Comfort - 30G | Comfort - 40G |
|----------------------------------------------------------|--------------|---------------|---------------|---------------|---------------|---------------|
| Размеры присоединительных патрубков (а)                  |              |               | Ду 32, (Муф   | рта G1 1/4")  |               |               |
| Диаметр патрубка дымовой трубы, наружный диаметр (d), мм | 150          | 150           | 180           | 180           | 200           | 200           |
| Размеры загрузочного проема, мм                          | 232x270      |               |               |               |               |               |
| Масса, кг                                                | 150          | 230           | 250           | 270           | 320           | 340           |
| Габаритные размеры, мм                                   |              |               |               |               |               |               |
| Н                                                        | 1480         | 1780          | 1920          | 2100          | 1920          | 2100          |
| D                                                        | 550          | 550           | 620           | 620           | 730           | 730           |
| H1                                                       | 118          | 118           | 118           | 118           | 118           | 118           |
| H2                                                       | 1120         | 1440          | 1550          | 1730          | 1550          | 1730          |
| Н3                                                       | 1300         | 1624          | 1730          | 1910          | 1730          | 1910          |


### **Автоматика**

Контроллер ST-22N управляет подачей воздуха с помощью дутьевого вентилятора, который, в свою очередь, в автоматическом режиме за счёт отключения и включения поддерживает постоянную температуру теплоносителя в системе отопления. Также данная автоматика позволяет поддерживать климат в помещении в более стабильном температурном режиме, увеличивает длительность горения от 10 до 20% и как следствие — экономит топливо! При установке модуля автоматики в системе отопления должен быть установлен циркуляционный насос.

Контроллер ST-81 так же обеспечивает поддержание заданной температуры теплоносителя и выполняет функцию управления подачей воздуха с помощью вентилятора котла. Дополнительно может управлять насосом циркуляции воды системы отопления и насосом горячего водоснабжения. Существует возможность выбора одного из четырех режимов работы насосов: отопление дома, приоритет бойлера, параллельные насосы, летний режим.







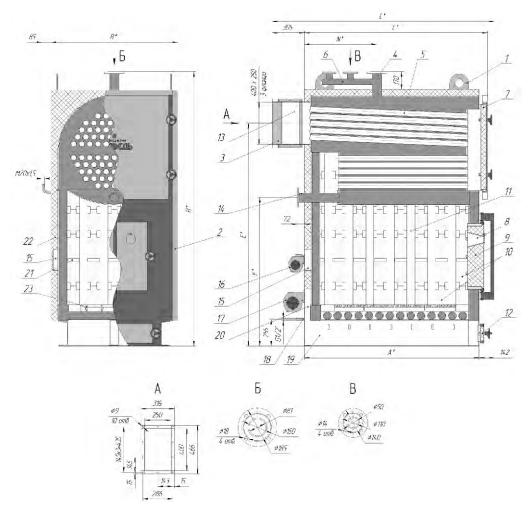


# Основные преимущества

- **1. Экономичность и высокий КПД**, в классе котлов подобного типа, благодаря конструкции комбинированной камеры сгорания и горизонтального жаротрубного теплообменника;
- **2. Комбинированная топка** трубный каркас, чередуемый с шамотным кирпичом, обеспечивает высокую температуру горения топлива;
- **3. Эффективная система подогрева и наддува** первичного и вторичного воздуха в зону горения обеспечивает процесс эффективного сжигания топлива;
- **4. Автоматическое поддержание заданной температуры** воды в котле по средствам автоматики;
- 5. Автоматическая защита котла от перегрева воды;
- **6. Равномерное охлаждение стенок** циркуляционной водой предохраняет теплообменник от накипи и гарантирует долгую службу котла;
- **7. Большие двери обслуживания и топки** упрощают загрузку топлива и чистку котла;
- **8. Длинный путь потока продуктов горения** обеспечивает хорошую отдачу тепла теплоносителю.

#### Общие сведения

Котёл «Медведь» Comfort тепловой мощностью до 1000 квт. - это стальной, промышленный, твердотопливный, водогрейный котел с ручной загрузкой топлива, приспособлен для топки дровами, отходами древесины, опилочными и торфяными брикетами, каменным углем и другим кусковым топливом. Котлы экономичны и удобны в эксплуатации.


Внедрение современных технологий и качественных материалов делает эти котлы надежными и безопасными в работе.

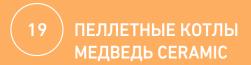
# Технические характеристики

Таб. 79. Технические характеристики и габаритные размеры котла «Медведь» Comfort.

| Па                                                                                                                                                                      | раметры             | Comfort<br>100 | Comfort<br>150 | Comfort<br>200 | Comfort<br>250 | Comfort<br>300 | Comfort<br>400 | Comfort<br>500 | Comfort<br>600 | Comfort<br>700 | Comfort<br>1000 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| Номинальная                                                                                                                                                             | мощность котла, кВт | 100            | 150            | 200            | 250            | 300            | 400            | 500            | 600            | 700            | 1000            |
| Диапазон регулирования мощности котла, кВт         50-100         70-160         95-210         130-260         160-320         200-420         250-520         350-615 |                     |                |                |                |                |                | 350-615        | 350-725        | 450-1000       |                |                 |
| Используемое топливо Дрова, древесные отходы, древесные и торфяные брикеты, каменны                                                                                     |                     |                |                |                |                | аменный уг     | оль            |                |                |                |                 |
| Отапливаемая                                                                                                                                                            | я площадь, м²       | 600-<br>1200   | 1000-<br>1800  | 1600-<br>2300  | 2100-<br>2800  | 2600-<br>3400  | 3000-<br>4200  | 3800-<br>5200  | 4700-<br>6150  | 5650-<br>7250  | 6750-<br>10000  |
|                                                                                                                                                                         | Высота, мм          | 1880           | 1880           | 2180           | 2180           | 2180           | 2620           | 2890           | 2890           | 2890           | 3180            |
| Габаритные<br>размеры                                                                                                                                                   | Ширина, мм          | 880            | 880            | 1070           | 1070           | 1200           | 1200           | 1490           | 1490           | 1490           | 1710            |
| расторы                                                                                                                                                                 | Длина, мм           | 1680           | 1680           | 1910           | 2310           | 2540           | 2540           | 2890           | 2890           | 3130           | 3130            |
| Потребляемая                                                                                                                                                            | эл., мощность, кВт  | 0,15           | 0,15           | 0,15           | 0,2            | 0,25           | 0,3            | 0,5            | 0,5            | 0,7            | 1,5             |
| Масса не боле                                                                                                                                                           | е, кг               | 1220           | 1260           | 1700           | 2100           | 2700           | 3200           | 4300           | 4500           | 4900           | 5900            |

Котельное оборудование — 69




- 1. Петли для подъема котла
- 2.Обшивка
- 3. Дымоход
- 4. Труба подачи
- 5. Теплообменник
- 6. Труба предохранительных клапанов
- 7. Дверь теплообменника
- 8. Окошко обзора топки
- 9. Дверь топки
- 10. Шамотные кирпичи
- 11.Топка
- 12. Дверь зольника

- 13. Заглушка дымохода
- 14. Труба обратки
- 15. Камера подогрева вторичного воздуха
- 16. Вентилятор вторичного воздуха
- 17. Вентилятор первичного воздуха
- 18. Труба слива теплоносителя
- 19. Зольник
- 20. Камера подогрева первичного воздуха
- 21. Отверстия подачи вторичного воздуха
- 22. Термоизоляция
- 23. Колосники

Рис. 47. Габаритные размеры котла «Медведь» Comfort.







Медведь Сегатіс 25 Медведь Сегатіс 30 Медведь Сегатіс 40 Медведь Сегатіс 50 Медведь Ceramic 60 Медведь Ceramic 80 Медведь Ceramic 100 Медведь Ceramic 150



#### Общие сведения

#### Режим ручной загрузки:

Топливо через верхний люк загружается на колосниковую решетку (верхняя камера сгорания), где и происходит его сжигание. Этот режим предназначен для использования любого топлива крупной фракции (дерево, брикет, кусковой уголь, солома и т.д.). Первичный воздух подается через рассекатель вентилятором, который установлен снизу на задней стенке котла; вторичный воздух для сжигания пиролизных газов подается через форсунки на боковых и верхней стенке топки вентилятором, который находится на верхней стенке. Процесс горения и работу насоса центрального отопления контролирует пульт управления.

### Режим работы с факельной горелкой:

В нижний люк котла устанавливается факельная горелка, в которую механизировано подается топливо из бункера. Сгорание топлива проходит в нижней камере. Этот режим автоматической загрузки предназначен для сжигания пеллет (в том числе агропеллет). Факел пеллетной горелки направлен на заднюю стенку топки котла с футеровкой. Процесс авторозжига, горения и очистки горелки контролирует многофункциональный блок управления. Механизированная подача топлива и автоматика поставляется в комплекте с факельной горелкой.

# Основные преимущества

- Вертикальный теплообменник (меньше оседает золы, реже чистить, подходит для работы на агропеллете);
- Мультиуниверсальность (Двухкамерная топка позволяет работать в ручном и автоматическом режиме, не демонтируя горелку);
- Современная автоматика:
- 5 лет гарантии;
- Конструкция котла позволяет сжигать разные виды топлива (пеллеты, уголь, дерево, брикеты, опилки, отходы древесины).
- Шамотированная топка:
- Толщина стенки теплообменника 5мм (до 100кВт), 6мм (150кВт), что дает большие сроки эксплуатации.



# 🔃 Базовая комплектация

Контроллер управления для работы с ручной загрузкой кускового топлива

Два вентилятора (раздельный поток первичного и вторичного

Предохранительный клапан

Горелка пеллетная керамическая самоочищающаяся Контроллер управления горелкой Plum (Польша) Подающий пеллеты шнек с мотор-редуктором

Котельное оборудование

# Технические характеристики

Таб. 80. Технические характеристики котлов Медведь Ceramic.

| Таб. 80. Техни                                                                                                                  | ческие характеристики котлов Медведь Ceramic.           |                     |                     |                      |                     |                     |                     |                      |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------|
|                                                                                                                                 |                                                         |                     |                     |                      |                     |                     |                     |                      |
|                                                                                                                                 | 25                                                      | 32                  | 40                  | 50                   | 65                  | 80                  | 100                 | 150                  |
| Вид топлива:<br>- основной режим<br>- резервный режим                                                                           |                                                         | Угс                 | оль каменны         | Пелл<br>й, антрацит, |                     | ва, биотопли        | <b>1</b> B0         |                      |
| Номинальная теплопродуктивность, кВт ± 10%                                                                                      | 25                                                      | 32                  | 40                  | 50                   | 65                  | 80                  | 98                  | 150                  |
| Габаритные размеры котла:<br>- длина, мм<br>- ширина, мм<br>- высота, мм                                                        | 1250<br>635<br>1450                                     | 1470<br>700<br>1450 | 1525<br>700<br>1500 | 1620<br>750<br>1575  | 1770<br>800<br>1650 | 1770<br>910<br>1650 | 1890<br>940<br>1840 | 1950<br>1000<br>1950 |
| Размеры верхней камеры сгорания котла:<br>- длина, мм<br>- ширина, мм<br>- высота, мм                                           | 500<br>400<br>490                                       | 600<br>440<br>465   | 650<br>440<br>540   | 690<br>500<br>580    | 780<br>550<br>600   | 780<br>670<br>600   | 900<br>690<br>620   | 950<br>760<br>640    |
| Объем верхней топки, л                                                                                                          | 78                                                      | 120                 | 150                 | 165                  | 200                 | 270                 | 320                 | 460                  |
| Объем воды в котле, л ±10%                                                                                                      | 95                                                      | 105                 | 130                 | 175                  | 204                 | 242                 | 301                 | 335                  |
| Температура воды,°С:<br>- на выходе из котла, не более<br>- на входе в котел, не меньше                                         |                                                         | 95<br>55            |                     |                      |                     |                     | 90<br>55            |                      |
| Размер горловины загрузочного люка, мм (ширина х<br>высота)                                                                     | 340x220 340x235 340x235 340x325 340x325 430x310 430x310 |                     |                     |                      |                     | 430x310             |                     |                      |
| Выход под дымоход, мм                                                                                                           | 200x190                                                 | 200x200             | 200x200             | 200x230              | 200x230             | 200x300             | 200x300             | 300x200              |
| Номинальный расход топлива, кг/год, не больше:<br>- основной вид топлива (Q=18 МДж/кг)<br>- резервный вид топлива (Q=27 МДж/кг) | 5,8<br>3,9                                              | 7,4<br>5,0          | 9,3<br>6,3          | 11,6<br>7,8          | 15,1<br>10,2        | 18,6<br>12,5        | 22,8<br>15,6        | 35,0<br>18,4         |
| Рабочее давление воды *, МПа:<br>- минимальное<br>- максимальное                                                                |                                                         |                     |                     | 0                    | ,1<br>,2            |                     |                     |                      |
| Коэффициент полезного действия,%:<br>- основной вид топлива (Q=18 МДж/кг)<br>- резервный вид топлива (Q=27 МДж/кг)              | 93<br>86                                                |                     |                     |                      |                     |                     |                     |                      |
| Разрежение за котлом, Па                                                                                                        | 2                                                       | 5                   |                     |                      | 40                  |                     |                     | 50                   |
| Температура продуктов сгорания, °С                                                                                              | 25 40                                                   |                     |                     |                      |                     |                     | 140-160             |                      |
| Напряжение питания, В/частота, Гц                                                                                               | 110-140<br>~220/50                                      |                     |                     |                      |                     |                     |                     |                      |
| Высота дымовой трубы от оси дымохода котла, м                                                                                   | 7                                                       | 7                   | 7                   | 7                    | 7                   | 8                   | 15                  | 15                   |
| Диаметр трубы дымохода                                                                                                          | 200                                                     | 200                 | 200                 | 200                  | 220                 | 250                 | 250                 | 250                  |
| Масса котла (без воды и горелки), кг                                                                                            | 455                                                     | 530                 | 560                 | 650                  | 790                 | 910                 | 1005                | 1300                 |

# Габаритные и присоединительные размеры

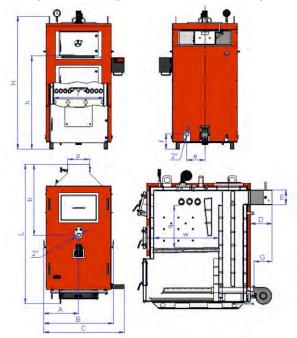



Рис. 48. Габаритные размеры котлов Медведь Ceramic.

Таб. 81. Габаритные размеры котлов Медведь Ceramic.

| Разме- | Котёл, кВт  |             |             |             |             |             |             |             |  |  |  |  |  |
|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|--|--|--|
| ры, мм | 25          | 32          | 40          | 50          | 65          | 80          | 100         | 150         |  |  |  |  |  |
| Α      | 815         | 740         | 340         | 380         | 410         | 460         | 482         | 540         |  |  |  |  |  |
| В      | 640         | 680         | 680         | 760         | 810         | 930         | 965         | 1080        |  |  |  |  |  |
| С      | 795         | 835         | 835         | 915         | 965         | 1085        | 1120        | 1235        |  |  |  |  |  |
| L      | 1255        | 1335        | 1445        | 1625        | 1780        | 1780        | 1870        | 2050        |  |  |  |  |  |
| Н      | 1455        | 1440        | 1495        | 1580        | 1655        | 1655        | 1850        | 1910        |  |  |  |  |  |
| D      | 210         | 110         | 130         | 300         | 310         | 310         | 310         | 310         |  |  |  |  |  |
| G      | 150         | 60          | 80          | 200         | 250         | 250         | 260         | 260         |  |  |  |  |  |
| b      | 815         | 730         | 780         | 950         | 1010        | 1010        | 990         | 1315        |  |  |  |  |  |
| е      | 175         | 225         | 225         | 190         | 190         | 250         | 250         | 300         |  |  |  |  |  |
| f      | 175         | 155         | 155         | 185         | 185         | 185         | 210         | 210         |  |  |  |  |  |
| pxm    | 180x<br>180 | 190x<br>180 | 190x<br>190 | 230x<br>200 | 230x<br>200 | 300x<br>200 | 300x<br>200 | 300x<br>200 |  |  |  |  |  |
| h      | 1030        | 975         | 1040        | 1075        | 1135        | 1135        | 1230        | 1320        |  |  |  |  |  |
| r      | 400         | 440         | 440         | 500         | 550         | 670         | 690         | 800         |  |  |  |  |  |
| w      | 500         | 600         | 650         | 690         | 780         | 780         | 900         | 895         |  |  |  |  |  |
| q      | 490         | 480         | 540         | 580         | 600         | 600         | 600         | 660         |  |  |  |  |  |





# ВОДОПОДГОТОВИТЕЛЬНЫЕ УСТАНОВКИ ВПУ





Водоподготовительные установки ВПУ предназначены для смягчения воды (снижения уровня рН), поступающей из хозяйственно-питьевого водопровода, скважин или открытого водоема, перед ее подачей в паровые котлы или водоподогревательные установки.

# 🥸 Конструкция

Водоподготовительная установка представляет собой комплекс емкостей-аппаратов, укрепленных на жесткой раме. Вода под давлением поступает в ВПУ-1, где подвергается механической фильтрации и реагентному смягчению. Подготовленная вода из ВПУ-1 через накопительную емкость подается в замкнутую систему котельного или иного технологического оборудования.

Во время работы катионит постепенно истощается, в результате чего жесткость подготавливаемой воды возрастает. Временной интервал, в течение которого катионит выполняет свои функции, зависит от жесткости подаваемой для обработки воды, поэтому данный интервал определяется путем расчетов или забором проб воды с последующим проведением лабораторных исследований.

Катионитная смола марки КУ-2, используемая в качестве реагента, в процессе работы подлежит периодическому восстановлению, промывке и взрыхлению. Регенерация осуществляется подачей раствора, состоящей из воды и технической поваренной соли. Предварительно в отдельной емкости ВПУ-1 готовится концентрированный раствор, который затем в эжекторе разбавляется и под давлением подается в верхнюю часть катионита. Промывка производится обычной водой под давлением, подаваемой в течение 75 минут. Время регенерации и взрыхления составляет 55 и 15 минут соответственно.

# **Ж** Комплектация

В комплект поставки ВПУ-1 входит все необходимое для осуществления цикла оборудование, в том числе манометры и запорная арматура.

Таб. 82. Технические характеристики водоподготовительных установок ВПУ.

| Параметры                                                                                        | Значение      |
|--------------------------------------------------------------------------------------------------|---------------|
| Производительность, м3                                                                           | 1,0           |
| Гидравлическое сопротивление без фильтрующей<br>загрузки при номинальной производительности, МПа | не более 0,04 |
| Гидравлическое сопротивление с фильтрующей<br>загрузкой при номинальной производительности, МПа  | не более 0,3  |
| Полнота выгрузки сорбента при гидроперегрузке, %                                                 | не менее 97   |
| Коэффициент использования реагента на регенерацию                                                | не более 3,0  |
| Расход соли на одну регенерацию, кг                                                              | 45            |

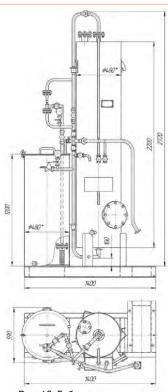



Рис. 49. Габаритные размеры.

Котельное оборудование

# ТЕПЛООБМЕННОЕ ОБОРУДОВАНИЕ

# Общая информация



# (≔) Бойлер, или кожухотрубный подогреватель

Водонагреватель, внутри которого встроен мощный теплообменник, нормальная мощность которого составляет от 25 до 65 кВт. Основным генератором тепла является отопительный котел, который даже в летний период при отключенном контуре отопления благодаря автоматике будет автоматически включаться для подачи необходимого количества тепла в контур бойлера, для приготовления необходимого количества воды.



### Водо-водяные подогреватели ВВП

Применяют в системах отопления и горячего водоснабжения зданий различного назначения.



### Сравнение пластинчатых и кожухотрубных теплообменников

Как правило, кожухотрубные теплообменники используют на замену, при ремонте уже существующих систем отопления и ГВС, в то время как пластинчатые теплообменники при проектировании новых систем отопления и ГВС.

Обычно кожухотрубные теплообменники используются при давлениях теплоносителя более 25 кгс/см². Но при давлениях до 25 кгс/см<sup>2</sup> пластинчатые теплообменники являются значительно более эффективными.



### ≔) Пароводяные подогреватели ПП

Предназначены для подогрева воды в системах теплоснабжения, отопления и горячего водоснабжения коммунальнобытовых, общественных, производственных зданий, работающих по наиболее распространенным графикам температурного регулирования 70°C/150°C; 70°C/130°C; 70°C/95°C и 5°C/60°C.



# ≔ Теплообменник пластинчатый разборный ТОР

Предназначен для осуществления процессов теплообмена между средами «вода-вода», «пар-вода» и применяется в системах отопления и горячего водоснабжения жилых, административных и промышленных зданий, а также в различных технологических процессах.

При аналогичных параметрах пластинчатые теплообменники в 3-6 раз меньше по габаритам и составляют 1/6 от веса кожухотрубных теплообменников. Таким образом, экономятся не только площади под установку, но и снижаются начальные затраты.





# **√** Назначение

Горизонтальные водо-водяные секционные подогреватели предназначены для систем отопления и горячего водоснабжения, в которых теплоносителем является горячая вода, получаемая от котельных или поступающая от тепловых магистралей ТЭЦ.

Подогреватели могут использоваться и в других схемах, в которых требуется осуществить нагрев или охлаждение жидкости (например, в качестве охладителей конденсата для пароводяных подогревателей). При этом параметры теплообменивающихся сред не должны превышать те их значения, которые регламентированы для условий применения данных подогревателей в системах теплоснабжения.

# Варианты исполнения

Мы изготавливаем серийные подогреватели водо-водяные секционные Ду50 (Дн=57мм), Ду65 (Дн=76мм), Ду80 (Дн=89мм), Ду100 (Дн=108мм Дн=114мм), Ду150 (Дн=159мм), Ду200 (Дн=21  $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$ 

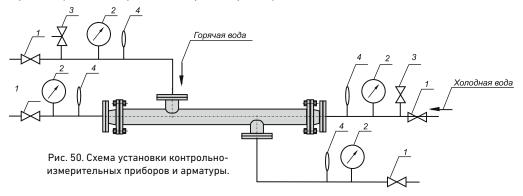
Трубные системы могут изготавливаться из гладких или профилированных латунных трубок. По желанию заказчика возможно изготовление корпусов и трубных систем подогревателей из специальных сталей и сплавов.

# 🥸) Устройство и принцип работы

Секционные подогреватели (далее «подогреватели») состоят из кожухотрубных секций, соединенных в блоки заданной теплопроизводительности с помощью соединительных калачей. Для присоединения к трубопроводам сетевой воды между корпусами подогревателей и трубопроводами устанавливаются переходные патрубки. Каждая секция представляет собой неразборный блок, состоящий из корпуса, трубных досок, трубок поверхности теплообмена. Корпуса секций подогревателей выполняются из стальных труб и соединяются между собой штуцерами.

Разъемное исполнение секций позволяет осуществлять организацию производства, транспортировки и сборки на месте блоков с различным числом однотипных секций, в зависимости от назначения, температурного режима, площади теплообмена ит.д.

В подогревателях вода, предназначенная для подогрева, движется по трубам трубной системы, а нагревающая вода движется в межтрубном пространстве с соблюдением принципа противотока.


# 🥸 Конструкция

### Подогреватель должен быть снабжен:

- а) регулирующей и запорной арматурой;
- б) приборами, показывающими давление и температуру воды;
- в) предохранительными устройствами.

# Установка контрольно-измерительных приборов и арматуры

Рекомендуемая схема установки контрольно-измерительных приборов и арматуры показана на рис.60 и является обязательной в случае отсутствия проектной документации на установку подогревателя.



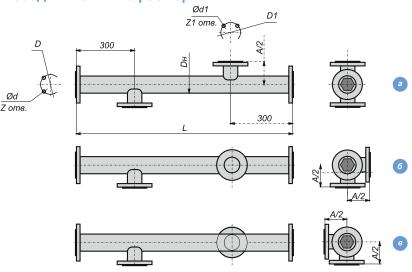
Таб. 83. Технические данные контрольно-измерительных приборов и арматур.

| Nº | Наименование                           | Обозначение       | Количество | Примечание                                |
|----|----------------------------------------|-------------------|------------|-------------------------------------------|
| 1  | Задвижка или Вентиль запорный муфтовый | 30ч2бр 15ч8бр     | 4          | Устанавливается при Ду=80-250 и Ду=32- 65 |
| 2  | Манометр                               | ДМ1001-2,5МПа-1,5 | 4          |                                           |
| 3  | Клапан предохранительный               | 17с22ж            | 4          |                                           |
| 4  | Термометр ртутный                      | TP; 0-200         | 4          |                                           |

# Pecypc

# Показатели надежности:

- установленная безотказная наработка Ту не менее 8000 часов;
- средний срок службы между капитальными ремонтами не менее 5 лет.


# Гарантийный срок эксплуатации - 24 месяца со дня отгрузки

# Технические характеристики

Таб. 84. Технические характеристики подогревателей водо-водяных.

| Параметры                                                                   | Корпус<br>(межтрубное пространство) | Трубное<br>пространство |
|-----------------------------------------------------------------------------|-------------------------------------|-------------------------|
| Расчетное давление воды, МПа (кгс/см²)                                      | 1,0                                 | (10)                    |
| Рабочее давление воды, МПа (кгс/см²)                                        | 1,0                                 | (10)                    |
| Пробное гидравлическое давление, МПа (кгс/см²)                              | 1,3                                 | (13)                    |
| Расчетная температура, °C                                                   | 20                                  | 00                      |
| Рабочая температура греющей воды, °С, не более                              | 15                                  | 50                      |
| Максимальный перепад температур нагреваемой и греющей стороны, °С, не более | 4                                   | 5                       |
| Расчетное число циклов нагружения, не более                                 | 10                                  | 00                      |
| Назначенный (расчетный) срок службы, лет                                    | 1                                   | 5                       |

# Габаритные и присоединительные размеры



**а** - типовое, (Т); **б** - правое (Пр); **в** - левое (П)

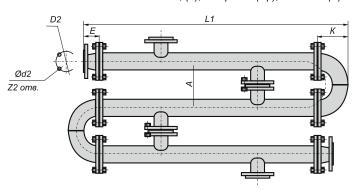



Рис. 51. Подогреватель разъемный из секций.

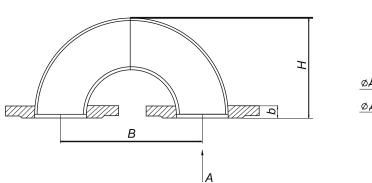


Таб. 85. Габаритные и присоединительные размеры подогревателей водо-водяных.

| рес перехода, кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 0                          | 2                          |             | n                |              | ,            | _            | ,            |              | <b>&gt;</b>  | ,            | ,            | 0            | .            | LC           | ,            | ,            | 1            | ,            | 1            | _            |              | _            | _                |      |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|----------------------------|-------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|------|--------|
| ходз, кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Вес пере                             | 4,20                       | 5,65                       | 7           | -<br>-<br>-      | 8.70         | ;            | 8 70         | ĵ            | 17.          | -<br>4<br>0, | 17. 3        | <u>f</u>     | 18           | <u>-</u>     | 27 5         | . /4         | 32 /         | 32,          | 6 47         |              | 7 Z          |              | 00           |                  |      |        |
| на, кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Вес кэлэ                             | 5,85                       | 8,58                       | 0,00        | -<br>0<br>1      | 14.8         |              | 14.8         | r<br>F       | 676          | 7'07         | 676          | 707          | 5 47         | 2            | 700          | 0,           | 70 5         | 0,77         | 12% 4        | 0<br>t       | 179 0        | 0,7          | 234.0        | 20,00            |      |        |
| 'ии' кс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Вес секп                             | 21,6                       | 31,7                       | 41,3        | 67,7             | 51,1         | 82,0         | 60,3         | 102,4        | 103,7        | 174,0        | 111,7        | 189,4        | 168,0        | 296,0        | 260,6        | 453,2        | 342          | 610,0        | 448,0        | 794,6        | 290,0        | 1003,0       | 9'96'        | 1425,0           |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , <sub>Μ</sub> Μ                     | 200                        | 200                        | 076         | 740              | 300          |              | 300          | 9            | 700          | 400          | 700          | 1            | 500          |              | 400          | 200          | 700          | 000          | 700          | 200          | 000          | 00           | 000          | 2                |      |        |
| ых трубок                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Количен<br>темдооппэт<br>в одной сек | 7                          | 7                          |             | 7                | 19           | :            | 19           | -            | 21           | <u>-</u>     | 37           | ò            | 61           | -            | 100          | 2            | 151          | -            | 211          | 7            | 283          | 207          | 7.30         | 5                |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z2, мм                               | 4                          | 4                          | ,           | 4                | 7            |              | 7            | t            | 0            | 0            | a            | 0            | 8            | )            | α            | <b>o</b>     | α            | 0            | 1.2          | 7-           | 12           | 7.           | 1,4          | 2                |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z1, мм                               | 4                          | 4                          | ,           | 4                | 4            |              | 7            | r            | 0            | 0            | α            | <b>5</b>     | 8            | )            | α            | >            | 12           | 71           | 12           | 7-           | 1,4          | 2            | 1,4          | 2                |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , M<br>Μ                             | 7                          | 7                          | ,           | 4                | œ            | ,            | α            | •            | 0            | 0            | a            | 0            | 8            | )            | 12           | 7-           | 1.2          | 7            | 1,4          | 2            | 1,4          | 2            | 7.0          | 0 4              |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d2, мм                               | 18                         | 18                         | 0,          | 0                | 18           |              | 18           | 2            | 10           | 0            | 1.0          | 10           | 23           |              | 23           | 67           | 23           | 67           | 23           | 67           | 23           | 7.0          | 23           | 7                |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | д1, мм                               | 18                         | 18                         | 0,          | <u>o</u>         | 18           |              | 2            | 2            | 0,           | <u>o</u>     | 9,           | 2            | 23           | 21           | 23           | 64           | 23           | 67           | 23           | 24           | 23           | 64           | 25           | ۲,               |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ρ<br>Μ                               | 18                         | 18                         | 0           | <u>•</u>         | 18           | 2            | 2            | 2            | 23           | 67           | 23           | 67           | 23           | 2            | 23           | 64           | 23           | 67           | 23           | 24           | 76           | 04           | 76           | 0 7              |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D2, мм                               | 110                        | 125                        | 17.6        | -<br>-<br>-<br>- | 160          | 160          |              | 160          |              | 2            | 210          | 017          | 210          | 017          | 076          | 21.2         | 205          | 6/3          | 205          | 673          | 350          | 2            | 700          | 0                | 7.40 | ţ<br>5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1, м<br>м                           | 110                        | 125                        | 7 7         | 5                | 160          | 3            | 160          | 2            | 010          | 017          | 210          | 0 7          | 740          | 2            | 205          | 6/4          | 250          | 000          | 7,00         | o<br>t       | 047          | o<br>t       | т<br>п       | 2                |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,<br>м<br>м                          | 125                        | 145                        | 140         | 001              | 180          |              | 180          | 2            | 076          | 740          | 0%0          | 7            | 295          | 2.1          | 250          | 0            | 00%          | 004          | 077          | 0            | 7<br>7       | 2            | 420          | 070              |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Г1, мм                               | 2210                       | 2229                       | 2261        | 4261             | 2306         | 4306         | 2306         | 4306         | 2458         | 4458         | 2462         | 4462         | 2575         | 4575         | 2721         | 4721         | 2677         | 4677         | 2859         | 4829         | 2960         | 4960         | 3062         | 5062             |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 2000                       | 2000                       | 2000        | 4000             | 2000         | 4000         | 2000         | 4000         | 2000         | 4000         | 2000         | 4000         | 2000         | 4000         | 2000         | 4000         | 2000         | 4000         | 2000         | 4000         | 2000         | 4000         | 2000         | 4000             |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>M<br>M<br>M                     | 57                         | 76                         | 0           | 0                | 108          |              | 114          | •            | 011          | 134          | 140          | 00           | 219          |              | 273          | 2 / 3        | 325          | 253          | 377          |              | 707          | 170          | 530          | 2                |      |        |
| Площадь сече-<br>ния для одной<br>секции, м²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | отондудТ<br>вятэнвдтэодп             | 0,00062                    | 0,00108                    | 0.000       | 0,00,0           | 0,00293      |              | 0.00293      | 0,400,0      | 0677000      | 0,000476     | 0.0057       | 0,000,0      | 986000       | 0,00,0       | 0.0148       | 0,0          | 0.0325       | 0,02323      | 0.0327.8     | 0,000        | 0.07.357     | ,000         | 0.04421      | 1,2000,0         |      |        |
| Площад<br>ния для<br>секці                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Межтрубного<br>пространства          | 0,00116                    | 0,00233                    | 0.000       | 0,000,0          | 0.00492      |              | 0.005        | 5            | 0.0100       | 0,010,0      | 0.0122       | 0,0122       | 0.0257       | 0,0=0,       | 0.0308       | 0000         | 7770         | 0,0443       | 0 05000      | 0,00,0       | 0.0738       | 0,0,0        | 0 1 1 0      | -<br>-<br>-<br>5 |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Расход нагр<br>среды,                | 2,15                       | 3,9                        | U           | 0,'0             | 10.5         | 2            | 10.5         | 2.           | 0 7 1        | 0,0          | 306          | 20,0         | 0.78         | 0,1,0        | 40 5         | 2,           | 2 2 2        | 0,00         | 1125         | 0,21         | 1255         | 120,0        | 1800         | 2,7              |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | топ йовоппэТ<br>Вא*                  | 7,9                        | 13,1                       | 18,2        | 40,7             | 39,9         | 85,7         | 39,9         | 85,7         | 9'59         | 138,0        | 74,4         | 147,5        | 113,4        | 238,4        | 236,0        | 479,1        | 302,1        | 632,4        | 421,7        | 886,2        | 9'989        | 1212,8       | 897,5        | 1874,6           |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | тоонхдэвоП<br>өрхүү                  | 0,37                       | 0,65                       | 1,11        | 2,24             | 1,76         | 3,54         | 1,76         | 3,54         | 2,85         | 5,70         | 3,40         | 9,90         | 5,75         | 11,5         | 10,0         | 20,3         | 13,8         | 28,0         | 19,8         | 40,1         | 26,8         | 53,7         | 41,0         | 83,0             |      |        |
| o in the control of t | подогревателя                        | ПВВ 57*2000<br>ПВВ 57*4000 | ПВВ 76*2000<br>ПВВ 76*4000 | ПВВ 89*2000 | ПВВ 89*4000      | ПВВ 108*2000 | ПВВ 108*4000 | ПВВ 114*2000 | ПВВ 114*4000 | ПВВ 159*2000 | ПВВ 159*4000 | ПВВ 168*2000 | ПВВ 168*4000 | ПВВ 219*2000 | ПВВ 219*4000 | ПВВ 273*2000 | ПВВ 273*4000 | ПВВ 325*2000 | ПВВ 325*4000 | ПВВ 377*2000 | ПВВ 377*4000 | ПВВ 426*2000 | ПВВ 426*4000 | ПВВ 530*2000 | ПВВ 530*4000     |      |        |

Примечание: Тепловой поток секции определен при условиях: -скорость нагреваемой среды — 1 м/с, - расход среды в трубном пространстве; - перепад температуры в подогревателе по нагреваемой и греющей среде — 45°С; - среднелогарифмический температурный перепад — 10°С

# КАЛАЧИ






Калачи для водо-водяных подогревателей служат для сопряжения, необходимого для обеспечения требуемых тепловых характеристик секций между собой.

Для правильного подбора калачей водо-водяных подогревателей в таблице ниже в колонке «Обозначение» указан наружный диаметр корпусов водо-водяных подогревателей, для совместного использования с которыми предназначены калачи данного типоразмера.

# Габаритные и присоединительные размеры



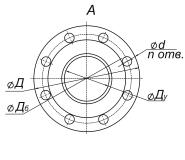
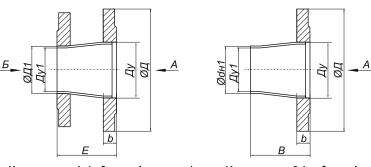



Рис. 52. Габаритные и присоединительные размеры.

Таб. 86. Габаритные и присоединительные размеры.

| Обозначение |     |     |     | Размер |     |     |    |    | Massa ve  |
|-------------|-----|-----|-----|--------|-----|-----|----|----|-----------|
| Ооозначение | Ду  | dH  | В   | Н      | Д   | Дб  | b  | d  | Масса, кг |
| Калач 57    | 50  | 57  | 200 | 134    | 160 | 125 | 18 | 18 | 5,85      |
| Калач 76    | 65  | 76  | 200 | 143    | 180 | 145 | 20 | 18 | 8,58      |
| Калач 89    | 80  | 89  | 240 | 170    | 195 | 160 | 20 | 18 | 10,4      |
| Калач 108   | 100 | 108 | 300 | 210    | 215 | 180 | 22 | 18 | 14,8      |
| Калач 114   | 100 | 108 | 300 | 210    | 215 | 180 | 22 | 18 | 14,8      |
| Калач 159   | 150 | 159 | 400 | 310    | 280 | 240 | 24 | 23 | 26,2      |
| Калач 168   | 150 | 159 | 400 | 310    | 280 | 240 | 24 | 23 | 26,2      |
| Калач 219   | 200 | 219 | 500 | 415    | 335 | 295 | 24 | 23 | 47,5      |
| Калач 273   | 250 | 273 | 600 | 516    | 390 | 350 | 26 | 23 | 69,0      |
| Калач 325   | 300 | 325 | 600 | 600    | 440 | 400 | 28 | 23 | 79,5      |
| Калач 377   | 350 | 377 | 700 | 744    | 500 | 460 | 28 | 23 | 124,6     |
| Калач 426   | 400 | 426 | 900 | 810    | 565 | 515 | 30 | 25 | 179,0     |
| Калач 530   | 500 | 530 | 900 | 734    | 670 | 620 | 32 | 25 | 239,0     |








Переходы с одним или двумя фланцами нужны для присоединения водо-водяных подогревателей к входному и выходномутрубопроводам.

Для правильного подбора переходов в таблице ниже в графе «Обозначение» указан наружный диаметр корпусов секций водо-водяных подогревателей, для совместного использования с которыми предназначены переходы данного диаметра.

# Габаритные и присоединительные размеры



Исполнение 1 (с двумя фланцами)

Исполнение 2 (с одним фланцем)

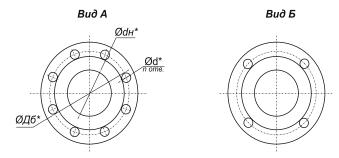



Рис. 53. Габаритные и присоединительные размеры.

Таб. 87. Габаритные и присоединительные размеры.

| 06          |     |     |     |      |     |     |     | Pa  | змеры, | мм  |    |    |    |    |    |    | Macca, |
|-------------|-----|-----|-----|------|-----|-----|-----|-----|--------|-----|----|----|----|----|----|----|--------|
| Обозначение | Ду  | Ду1 | d H | d H1 | Е   | В   | Д   | Д1  | Дб     | Дб1 | b  | b1 | d  | d1 | n  | n1 | кг     |
| Переход 57  | 50  | 40  | 57  | 45   | 70  | 65  | 160 | 145 | 125    | 110 | 18 | 18 | 18 | 18 | 4  | 4  | 4,2    |
| Переход 76  | 65  | 50  | 76  | 57   | 80  | 75  | 180 | 160 | 145    | 125 | 20 | 18 | 18 | 18 | 4  | 4  | 5,65   |
| Переход 89  | 80  | 65  | 89  | 76   | 85  | 80  | 195 | 180 | 160    | 145 | 20 | 20 | 18 | 18 | 4  | 4  | 7,15   |
| Переход 108 | 100 | 80  | 108 | 89   | 90  | 85  | 215 | 195 | 180    | 160 | 22 | 20 | 18 | 18 | 8  | 4  | 8,7    |
| Переход 114 | 100 | 80  | 114 | 89   | 90  | 85  | 215 | 195 | 180    | 160 | 22 | 20 | 18 | 18 | 8  | 4  | 8,7    |
| Переход 159 | 150 | 125 | 159 | 133  | 142 | 136 | 280 | 245 | 240    | 210 | 24 | 24 | 23 | 18 | 8  | 8  | 14,0   |
| Переход 168 | 150 | 125 | 159 | 133  | 142 | 136 | 280 | 245 | 240    | 210 | 24 | 24 | 23 | 18 | 8  | 8  | 14,0   |
| Переход 219 | 200 | 150 | 219 | 159  | 154 | 148 | 335 | 280 | 295    | 240 | 24 | 24 | 23 | 23 | 8  | 8  | 18,9   |
| Переход 273 | 250 | 200 | 273 | 219  | 199 | 191 | 390 | 335 | 350    | 295 | 26 | 24 | 23 | 23 | 12 | 8  | 27,5   |
| Переход 325 | 300 | 200 | 325 | 219  | 199 | 191 | 440 | 335 | 400    | 295 | 28 | 24 | 23 | 23 | 12 | 8  | 32,4   |
| Переход 377 | 350 | 250 | 377 | 273  | 240 | 232 | 500 | 390 | 460    | 350 | 28 | 26 | 23 | 23 | 16 | 12 | 47,0   |
| Переход 426 | 400 | 300 | 426 | 325  | 242 | 231 | 565 | 440 | 515    | 400 | 30 | 28 | 25 | 23 | 16 | 12 | 58,1   |
| Переход 530 | 500 | 350 | 530 | 377  | 322 | 311 | 670 | 500 | 620    | 460 | 32 | 28 | 25 | 23 | 20 | 16 | 90,1   |

Теплообменное оборудование 79

# 23 ПОДОГРЕВАТЕЛИ КОЖУХО-ТРУБНЫЕ (ПАРОВЫЕ) ПП



Подогреватели пароводяные (ПП) предназначены для систем отопления и горячего водоснабжения, жилых, общественных зданий и промышленных предприятий, работающих по температурным режимам 70/150 °C; 70/130 °C и 70/95 °C.

# Варианты исполнения

Назначение

Трубные системы могут изготавливаться из гладких или профилированных латунных трубок. По желанию заказчика возможно изготовление корпусов и трубных систем подогревателей из специальных сталей и сплавов.

# 🤯 Устройство и принцип работы

Подогреватель представляет собой кожухотрубный теплообменник горизонтального типа, основными узлами которого являются: корпус, трубная система, передняя и задняя (плавающая) водяные камеры, крышка корпуса.

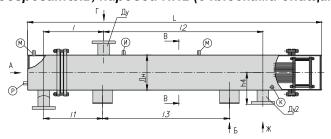
Сборка основных узлов подогревателя осуществляется с помощью разъемного фланцевого соединения, обеспечивающего возможность профилактического осмотра и ремонта.

В подогревателе нагреваемая вода движется по трубкам, а греющий пар через патрубок в верхней части корпуса поступает в межтрубное пространство, в котором установлены сегментные перегородки, направляющие движение парового потока. Конденсат греющего пара стекает в нижнюю часть корпуса и отводится из подогревателя. Накапливающиеся в подогревателе неконденсирующиеся газы (воздух) отводятся через патрубок на корпусе аппарата.

Таб. 88. Основные технические данные и параметры.

| Наименование<br>частей сосуда | Рабочее<br>давление,<br>МПа (кгс/см²) | Температура<br>стенки, <sup>0</sup> С | Рабочая<br>среда и ее<br>коррозион-<br>ные свойства | Вмести-<br>мость,<br>м³ (л) |
|-------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------|-----------------------------|
| в корпусе                     | 0,68 /(7,0)                           | до 250                                | пар                                                 | -                           |
| в трубном<br>пространстве     | 1,57 (16)                             | до 150                                | вода                                                | -                           |

# Технические характеристики


Таб. 89. Технические характеристики паровых подогревателей.

| Tue. 67. Textili tectific xapatiteprici intri napobbix nodor peda textili. |                                                |                                 |                                           |                            |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------|------------------------------------------------|---------------------------------|-------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|
| Обозначение<br>подогревателя                                               | Площадь поверхности<br>нагрева, м <sup>2</sup> | Номинальный расход<br>воды, т/ч | Расчетный тепловой<br>поток, МВт (Гкал/ч) | Масса подогревателя,<br>кг |  |  |  |  |  |  |  |  |
| Темпер                                                                     | атурный график 70/95°C (м                      | аксимальное избыточное р        | рабочее давление пара - 0,                | 68 МПа)                    |  |  |  |  |  |  |  |  |
| ПП 2-6-7-ІІ                                                                | 6,3                                            | 29,2                            | 0,68 (0,585)                              | 416                        |  |  |  |  |  |  |  |  |
| ПП 2-11-7-ІІ                                                               | 11,4                                           | 53,4                            | 1,24 (1,07)                               | 646                        |  |  |  |  |  |  |  |  |
| ПП 1-16-7-ІІ                                                               | 16,0                                           | 76,0                            | 1,76 (1,52)                               | 753                        |  |  |  |  |  |  |  |  |
| ПП 1-21-7-ІІ                                                               | 21,2                                           | 103,5                           | 2,29 (1,99)                               | 959                        |  |  |  |  |  |  |  |  |
| ПП 1-35-7-ІІ                                                               | 35,3                                           | 169,0                           | 3,93 (3,38)                               | 1371                       |  |  |  |  |  |  |  |  |
| ПП 1-50-7-ІІ                                                               | 50,5                                           | 251,0                           | 5,82 (5,02)                               | 1636                       |  |  |  |  |  |  |  |  |
| ПП 1-71-7-ІІ                                                               | 71,0                                           | 342,0                           | 7,92 (6,84)                               | 2187                       |  |  |  |  |  |  |  |  |
| Темпера                                                                    | турный график 70/130°С (м                      | иаксимальное избыточное         | рабочее давление пара - 0                 | ,68 МПа)                   |  |  |  |  |  |  |  |  |
| ПП 2-9-7-ІІ                                                                | 9,5                                            | 32,4                            | 1,89 (1,63)                               | 506                        |  |  |  |  |  |  |  |  |
| ПП 2-17-7-ІІ                                                               | 17,2                                           | 59,0                            | 3,45 (2,98)                               | 769                        |  |  |  |  |  |  |  |  |
| ПП 1-24-7-ІІ                                                               | 24,4                                           | 83,5                            | 4,9 (4,22)                                | 920                        |  |  |  |  |  |  |  |  |
| ПП 1-32-7-ІІ                                                               | 32,0                                           | 110,5                           | 6,46 (5,57)                               | 1160                       |  |  |  |  |  |  |  |  |
| ПП 1-53-7-ІІ                                                               | 53,9                                           | 182,0                           | 10,58 (9,20)                              | 1656                       |  |  |  |  |  |  |  |  |
| ПП 1-76-7-ІІ                                                               | 76,8                                           | 261,0                           | 15,3 (13,20)                              | 2024                       |  |  |  |  |  |  |  |  |
| ПП 1-108-7-ІІ                                                              | 108,0                                          | 358,0                           | 21 (18,10)                                | 2660                       |  |  |  |  |  |  |  |  |
| Темпера                                                                    | турный график 70/150°С (м                      | иаксимальное избыточное         | рабочее давление пара - 0                 | ,68 МПа)                   |  |  |  |  |  |  |  |  |
| ПП 2-9-7-IV                                                                | 9,5                                            | 16,1                            | 1,31 (1,13)                               | 512                        |  |  |  |  |  |  |  |  |
| ПП 2-17-7-IV                                                               | 17,2                                           | 29,4                            | 2,41 (2,08)                               | 769                        |  |  |  |  |  |  |  |  |
| ПП 1-24-7-IV                                                               | 24,4                                           | 41,7                            | 3,45 (2,94)                               | 915                        |  |  |  |  |  |  |  |  |
| ПП 1-32-7-IV                                                               | 32,0                                           | 55,0                            | 4,5 (3,88)                                | 1160                       |  |  |  |  |  |  |  |  |
| ПП 1-53-7-IV                                                               | 53,9                                           | 93,0                            | 7,61 (6,55)                               | 1660                       |  |  |  |  |  |  |  |  |
| ПП 1-76-7-IV                                                               | 76,8                                           | 133,0                           | 10,9 (9,40)                               | 2037                       |  |  |  |  |  |  |  |  |
| ПП 1-108-7-IV                                                              | 108,0                                          | 188,0                           | 15,42 (13,30)                             | 2660                       |  |  |  |  |  |  |  |  |
|                                                                            |                                                |                                 |                                           |                            |  |  |  |  |  |  |  |  |

<sup>\*-</sup>давление рабочее максимальное избыточное - 1,57 Мпа; температура пара максимальная - 200⁰С.



# Подогреватель, паровой ПП2 (с плоскими днищами)



# Подогреватель, паровой ПП1 (с эллиптическими днищами)

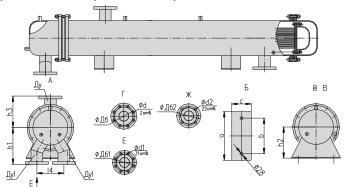


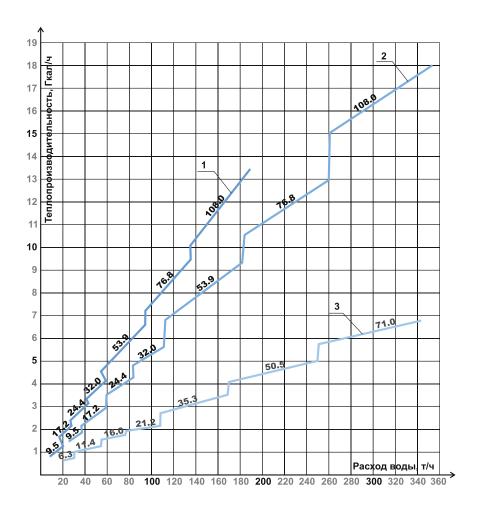

Рис. 54. Габаритные и присоединительные размеры.

Таб. 90. Габаритные и присоединительные размеры.

| Обозначение | Наименование                   | Код | Усло   | вные       | Присоединительные размеры, |
|-------------|--------------------------------|-----|--------|------------|----------------------------|
| Ооозначение | паименование                   | КОД | Dy, мм | Ру, кг/см² | ММ                         |
| К           | Отсос воздуха                  | 1   | 20     | -          | G 3/4"                     |
| Р           | Для измерения температуры воды | 2   | -      | -          | M 27x2                     |
| М           | Отвод воздуха                  | 2   | 15     | -          | G 1/2"                     |
| И           | Для измерения давления пара    | 1   | -      | -          | G 1/2"                     |

#### Pecypc:

Расчетный срок службы подогревателей – 12 лет


Гарантийный срок эксплуатации – 24 месяца с момента ввода подогревателя в эксплуатацию, но не более 36 месяцев со дня отгрузки потребителю.

Теплообменное оборудование 81

Таб. 91. Габаритные и присоединительные размеры подогревателей паровых.

|            | U              | 180         | 180         | 180         | 180          | 180          | 180          | 180          | 220          | 220          | 220          | 220          | 220          | 220          | 250          | 250          | 250          | 250          | 250           | 250           |
|------------|----------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|
|            | q              | 330         | 330         | 330         | 330          | 330          | 330          | 330          | 380          | 380          | 380          | 450          | 450          | 450          | 450          | 450          | 450          | 200          | 200           | 200           |
|            | Ф              | 450         | 450         | 450         | 450          | 450          | 450          | 450          | 200          | 200          | 200          | 270          | 270          | 270          | 940          | 940          | 940          | 750          | 750           | 750           |
|            | 22             | 4           | 4           | 4           | 4            | 7            | 4            | 4            | 4            | 4            | 4            | 7            | 4            | 7            | œ            | ∞            | œ            | ∞            | œ             | 80            |
|            | Z1             | 8           | œ           | ω           | ∞            | 80           | ∞            | œ            | œ            | œ            | 8            | 12           | 12           | 8            | 12           | 12           | 12           | 12           | 12            | 12            |
|            |                | 8           | ∞           | œ           | ω            | 80           | ∞            | ∞            | œ            | œ            | 80           | 12           | 12           | 12           | 12           | 12           | 12           | 16           | 12            | 12            |
|            | d2             | 18          | 18          | 18          | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18           | 18            | 18            |
|            | ф<br>Т         | 18          | 18          | 18          | 18           | 18           | 18           | 22           | 22           | 22           | 18           | 22           | 22           | 22           | 26           | 26           | 22           | 26           | 26            | 22            |
|            | ס              | 18          | 18          | 18          | 22           | 22           | 22           | 22           | 22           | 22           | 22           | 22           | 22           | 22           | 22           | 22           | 22           | 26           | 22            | 22            |
|            | Д62            | 125         | 125         | 125         | 125          | 125          | 125          | 125          | 160          | 160          | 160          | 160          | 160          | 160          | 210          | 210          | 210          | 210          | 210           | 210           |
|            | Д61            | 180         | 180         | 180         | 210          | 210          | 180          | 240          | 240          | 240          | 210          | 295          | 295          | 240          | 355          | 355          | 295          | 410          | 410           | 295           |
|            | Д6             | 180         | 180         | 180         | 240          | 240          | 240          | 240          | 295          | 295          | 295          | 350          | 350          | 350          | 400          | 350          | 359          | 460          | 400           | 400           |
| Размер, мм | h4             | 293         | 293         | 293         | 348          | 348          | 348          | 375          | 420          | 420          | 420          | 200          | 200          | 200          | 226          | 226          | 226          | 909          | 909           | 909           |
| Разм       | h3             | 288         | 293         | 293         | 413          | 413          | 413          | 440          | 477          | 477          | 477          | 526          | 526          | 526          | 570          | 570          | 570          | 620          | 620           | 620           |
|            | h2             | 288         | 288         | 288         | 348          | 348          | 348          | 385          | 440          | 440          | 440          | 490          | 490          | 490          | 535          | 535          | 535          | 610          | 610           | 610           |
|            | h<br>T         | 340         | 340         | 340         | 370          | 370          | 385          | 417          | 420          | 420          | 415          | 7490         | 490          | 480          | 260          | 226          | 226          | 909          | 909           | 009           |
|            | 71             | 1100        | 2000        | 2000        | 1100         | 2000         | 2000         | 1100         | 1100         | 2000         | 2000         | 1100         | 2000         | 2000         | 1000         | 1900         | 1900         | 1000         | 1900          | 1900          |
|            | <u>8</u>       | 1100        | 2000        | 2000        | 1100         | 2000         | 2000         | 1100         | 1100         | 2000         | 2000         | 1100         | 2000         | 2000         | 1000         | 1900         | 1900         | 1000         | 1900          | 1900          |
|            | 12             | 1300        | 2300        | 2300        | 1300         | 2300         | 2300         | 1300         | 1300         | 2300         | 2300         | 1300         | 2300         | 2300         | 1100         | 2100         | 2100         | 1100         | 2100          | 2100          |
|            | Ξ              | 460         | 540         | 540         | 465          | 545          | 545          | 510          | 512          | 592          | 592          | 260          | 940          | 940          | 264          | 949          | 949          | 620          | 700           | 700           |
|            | -              | 552         | 555         | 555         | 260          | 260          | 260          | 909          | 409          | 409          | 607          | 929          | 929          | 929          | 744          | 744          | 744          | 450          | 450           | 450           |
|            | _              | 2550        | 3550        | 3550        | 2683         | 2683         | 2683         | 2720         | 2785         | 3785         | 3785         | 2885         | 3885         | 3880         | 2986         | 3986         | 3986         | 3135         | 4135          | 4135          |
|            | Ду2            | 20          | 20          | 20          | 20           | 20           | 20           | 20           | 80           | 80           | 80           | 80           | 80           | 80           | 125          | 125          | 125          | 125          | 125           | 125           |
|            | ДуЛ            | 100         | 100         | 100         | 125          | 125          | 100          | 150          | 150          | 150          | 125          | 200          | 200          | 150          | 250          | 250          | 200          | 300          | 300           | 200           |
|            | Ду             | 100         | 100         | 100         | 150          | 150          | 150          | 150          | 200          | 200          | 200          | 250          | 250          | 250          | 300          | 250          | 250          | 350          | 300           | 300           |
|            | 퓸              | 325         | 325         | 325         | 426          | 426          | 426          | 480          | 530          | 530          | 530          | 930          | 930          | 930          | 720          | 720          | 720          | 820          | 820           | 820           |
|            | 00031184611100 | ПП 2-6-7-II | ПП 2-9-7-II | ПП 2-9-7-IV | ПП 2-11-7-II | ПП 2-17-7-II | ПП 2-17-7-IV | ПП 1-16-2-II | ПП 1-21-7-II | ПП 1-32-7-II | ПП 1-32-7-IV | ПП 1-35-7-II | ПП 1-53-7-II | ПП 1-53-7-IV | ПП 1-50-7-II | ПП 1-76-7-II | ПП 1-76-7-IV | ПП 1-71-7-II | ПП 1-108-7-II | ПП 1-108-7-IV |





Условные обозначения: числа, нанесенные на график, обозначают величины площади поверхностей нагрева подогревателей;

- 1 при нагреве воды по температурному графику 70/150°C;
- 2 при нагреве воды по температурному графику  $70/130^{\circ}$ C;
- 3 при нагреве воды по температурному графику 70/95°C;

# 24 ПОДОГРЕВАТЕЛЬ СЕТЕВОЙ ВОДЫ ПСВ



ПСВ-45-7-15 ПСВ-63-7-15 ПСВ-90-7-15 ПСВ-125-7-15 ПСВ-200-7-15 ПСВ-315-14-23 ПСВ-500-14-23



Подогреватели сетевой воды устанавливаются в схеме теплоснабжения и предназначены для подогрева сетевой воды на тепловых электростанциях паром из отборов турбин, а в отопительно-производственных и отопительных котельных – паром котлов низкого давления

# 🥸 Устройство и принцип работы

Подогреватель сетевой воды представляет собой кожухотрубный теплообменник вертикального типа, основными узлами которого являются корпус, трубная система, верхняя и нижняя (плавающая) водяные камеры.

Сборка узлов осуществляется с помощью фланцевого соединения, обеспечивающего возможность их профилактического

Корпус подогревателя состоит из цилиндрической обечайки, эллиптического днища и фланца для соединения с трубной системой. В верхней части обечайки корпуса установлен патрубок подвода пара, а ниже располагаются патрубок подвода конденсата, патрубок отсоса воздуха, муфты для подсоединения указателя уровня, а также патрубок для подсоединения датчика регулятора уровня. В днище установлен патрубок выхода конденсата пара и патрубок для регулятора уровня.

Трубная система состоит из верхней и нижней трубных досок, каркасных труб, прямых теплообменных труб, концы которых развальцованы в трубных досках.

Каркас трубной системы образуют каркасные трубы, поперечные сегментные перегородки, направляющие поток пара и служащие промежуточными опорами для теплообменных труб, пароотбойный щит. На верхней трубной доске предусмотрена установка воздушного клапана для отвода воздуха из корпуса при гидроиспытании и клапана для слива воды из верхней водяной камеры.

Верхняя водяная камера состоит из цилиндрической обечайки, эллиптического днища и фланца для соединения с трубной

системой, патрубков подвода и отвода сетевой воды. Внутренний объем камеры разделен перегородками на отсеки, благодаря которым сетевая вода совершает необходимое количество ходов. В верхней части днища установлена муфта воздушного клапана для отвода воздуха из трубной системы при гидроиспытании.

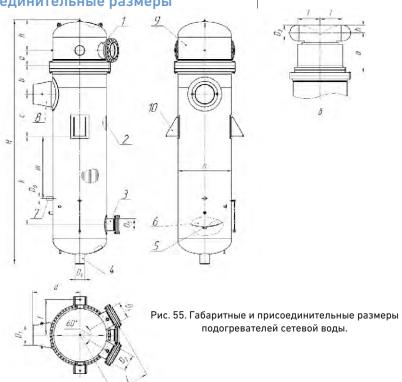
Нижняя водяная камера состоит из эллиптического днища и фланца для соединения с трубной системой. Внутренний объем камеры при четырех ходах сетевой воды разделен перегородкой. В днище установлена муфта для слива воды.

В подогревателе сетевая вода движется по теплообменным трубкам, а греющий пар поступает через пароподводящий патрубок в межтрубное пространство.

Конденсат пара стекает в нижнюю часть корпуса и отводится из подогревателя через регулирующий клапан, управляемый электронным автоматическим устройством. Аппаратура автоматического регулирования уровня конденсата поддерживает нормальный уровень конденсата в корпусе, выпускает избыток конденсата в дренажную сеть и препятствует выходу пара из корпуса.

Накапливающиеся в подогревателе неконденсирующиеся газы отводятся через патрубок.

Для контроля температуры сетевой воды на входе и выходе, а также греющего пара на входе на патрубках подогревателя предусмотрена установка технических стеклянных термометров прямого и углового исполнения и соответствующего диапазона измерения температуры. Термометры защищены металлическими оправами.




# Технические характеристики

Таб. 92. Технические характеристики подогревателей сетевой воды.

|          |                | 40СТИ<br>М <sup>2</sup>                |                | давление,<br>Па           | я<br>ра                                          | Температу <sub>і</sub><br>водь |           | сход                            | ро-<br>МВт                                  | 80°                              | геля                      |
|----------|----------------|----------------------------------------|----------------|---------------------------|--------------------------------------------------|--------------------------------|-----------|---------------------------------|---------------------------------------------|----------------------------------|---------------------------|
| Тип ПСВ* | Наименование   | Площадь поверхности<br>теплообмена, м² | Пара в корпусе | Воды в трубной<br>системе | Максимальная<br>температура пара<br>на входе, °C | На входе                       | На вхыоде | Номинальный расход<br>воды, т/ч | Расчетная теплопро-<br>изводительность, МВт | Количество ходов<br>сетевой воды | Масса подогревателя<br>кг |
| С        |                |                                        | 0,69           |                           |                                                  | 70                             | 150       | 90                              | 8,37                                        | 4                                | 2273                      |
| Ф        | ПСВ-45-7-15    | 45                                     | 0,147          | 1,47                      | 400                                              | 70                             | 110       | 180                             | 8,37                                        |                                  | 2756,2                    |
|          |                |                                        | 0,69           |                           |                                                  | 100                            | 150       | 100                             | 10,47                                       | 2                                | 2700,2                    |
| С        |                |                                        | 0,69           |                           |                                                  | 70                             | 150       | 120                             |                                             | 4                                | 2737                      |
| Ф        | ПСВ-63-7-15    | 63                                     | 0,147          | 1,47                      | 400                                              | 70                             | 110       | 2/0                             | 11,16                                       | 2                                |                           |
|          |                |                                        | 0,69           |                           |                                                  | 110                            | 150       | 240                             |                                             | 2                                | 3112,4                    |
| С        |                |                                        | 0,69           |                           |                                                  | 70                             | 150       | 175                             |                                             | 4                                | 3963                      |
| Φ        | ПСВ-90-7-15    | 90                                     | 0,147          | 1,47                      | 400                                              | 70                             | 110       | 350                             | 16,28                                       | 2                                | 4465                      |
|          |                |                                        | 0,69           |                           |                                                  | 110                            | 150       | 350                             |                                             |                                  | 4403                      |
| С        |                |                                        | 0,69           |                           |                                                  | 70                             | 150       | 250                             |                                             | 4                                | 4295                      |
| Ф        | ПСВ-125-7-15   | 125                                    | 0,147          | 1,47                      | 400                                              | 70                             | 110       | 500                             | 23,26                                       | 2                                | 4749                      |
|          |                |                                        | 0,69           |                           |                                                  | 110                            | 150       |                                 |                                             |                                  |                           |
|          |                |                                        | 0,297          |                           |                                                  | 70                             | 130       |                                 | 27,9                                        | 4                                |                           |
| М        |                |                                        | 0,69           |                           |                                                  | 70                             | 150       | 400                             |                                             | 4                                | 7326                      |
| Φ        | ПСВ-200-7-15   | 200                                    | 0,147          | 1,47                      | 400                                              | 70                             | 110       |                                 | 37,2                                        |                                  | 7956                      |
|          |                |                                        | 0,297          |                           |                                                  | 90                             | 130       | 800                             | 37,2                                        | 2                                |                           |
|          |                |                                        | 0,69           |                           |                                                  | 110                            | 150       |                                 | 07,2                                        |                                  |                           |
| Н        | ПСВ-300-14-23  | 24.4                                   | 4.07           | 2.27                      | 400                                              | 70                             | 150       | 400                             | 37,6                                        | 4                                | 16007                     |
| Ф        | 1100-300-14-23 | 311                                    | 1,37           | 2,26                      | 400                                              | 130                            | 180       | 800                             | 47,9                                        | 2                                | 17545                     |
| С        | ПСВ-500-14-23  | 500                                    | 0,69           | 2,26                      | 400                                              | 110                            | 150       | 1500                            | 69,8                                        | 2                                | 16032                     |
| M        |                |                                        | 1,37           |                           |                                                  | 130                            | 180       |                                 | 87,3                                        |                                  | 18200                     |

# Габаритные и присоединительные размеры



Таб. 93. Габаритные и присоединительные размеры подогревателей сетевой воды.

|                                       | вдоходп кпд эмнэчэс эовмЖ<br>вэдтодоп хіаводоххэдіатэч в | 0,0129      | 0,0182      | 0,0259      | 0,0364       | 0,058        | 0,1375                | 0,2182                     |  |
|---------------------------------------|----------------------------------------------------------|-------------|-------------|-------------|--------------|--------------|-----------------------|----------------------------|--|
| <sup>s</sup> M ,XRI                   | Бдоходп вгд эмнэчээ эоамЖ<br>чэтбаэдтодоп хідаодохууад а | 0,0259      | 0,0369      | 0,0518      | 0,0727       | 0,1160       | 0,1380                | 0,2180                     |  |
|                                       | мм ,іапьп йондопо внигД                                  | 172         | 173         | 210         | 210          | 262          | 345                   | 347                        |  |
|                                       | мм ,іапьп йондопо внидиШ                                 | 220         | 220         | 260         |              | 320          | 450                   | 450                        |  |
| т, вт                                 | -нэнгопьс очтопнен-<br>йодов отон                        | 3,72        | 89'4        | 7,27        | 7,48         | 13,02        | 22,00                 | 26,58                      |  |
| Масса<br>подогревателя, т             | монкдов в йодов Э<br>эвтэнедтэодп                        | 2,20        | 3,124       | 4,83        | 5,22         | 8,72         | 14,37                 | 18,14                      |  |
| подо                                  | рез воды                                                 | 2,02        | 2,514       | 3,824       | 4,08         | 92'9         | 12,42                 | 14,97                      |  |
|                                       | Количество отверстий<br>в опорных лапах, шт              | 2           | 2           | 2           | 2            | 2            | 2                     | 2                          |  |
|                                       | йизметр отверстий<br>мм ,хвпвл хіандопо в                | 28          | 28          | 35          | 35           | 35           | 42                    | 42                         |  |
|                                       | йоншүдговора довтО<br>от смеси, до                       | 70          | 70          | 70          | 70           | 70           | 70                    | 70                         |  |
| овных<br>ий, мм                       | Подвод конденсата, D5                                    | ,           | ,           | 200         | 200          | 250          | 250                   | 250                        |  |
| Размеры основных<br>присоединений, мм | Отвод конденсата, D4                                     | 150         | 150         | 300         | 300          | 400          | 400                   | 400                        |  |
| Разме                                 | Вход и выход сетевой<br>воды, D2 и D3                    | 150         | 250         | 300         | 300          | 350          | 200                   | 200                        |  |
|                                       | f d egen дох д                                           | 200         | 200         | 350         | 350          | 420          | 450                   | 200                        |  |
|                                       | Материал трубок                                          |             |             | 7RM 8       |              | ТОСТ         | s.⊓.                  |                            |  |
|                                       | Дизметр трубок, мм                                       | 19*1        | 19*1        | 19*1        | 19*1         | 19*1         | 19*1                  | 19*1                       |  |
|                                       | Количество трубок<br>(полное), шт                        | 228         | 320         | 456         | 940          | 1020         | 1212                  | 1928                       |  |
|                                       | Дииня трубок, мм                                         | 3410        | 3410        | 3410        | 3410         | 3410         | 4545                  | 4545                       |  |
|                                       | Ε                                                        | 1795        | 1735        | 1620        | 1620         | 1421         | 2160                  | 2160                       |  |
|                                       | *                                                        | '           | ,           | 2160        | 2160         | 2025         | 2850                  | 2850                       |  |
|                                       | _                                                        | 510         | 009         | 700         | 700          | 875          | 380                   | 380                        |  |
|                                       | ے                                                        | 345         | 615         | 009         | 009          | 780          | 265                   | 265                        |  |
| WW.                                   | <u>.</u>                                                 | 492         | 541         | 675         | 675          | 818          | 1045                  | 1097                       |  |
| Размеры, мм                           | ъ                                                        | 750         | 930         | 840         | 840          | 1070         | 1190                  | 1290                       |  |
| Ω.                                    | U                                                        | 098         | 1000        | 955         | 955          | 975          | 1320                  | 1220                       |  |
|                                       | ۵                                                        | 405         | 044         | 485         | 485          | 920          | 089                   | 780                        |  |
|                                       | n                                                        | 240         | 300         | 330         | 330          | 360          | 870                   | 1075                       |  |
|                                       | Ξ                                                        | 4605        | 4810        | 2060        | 2060         | 2400         | 5 7150                | , 7350                     |  |
|                                       | ۵                                                        | 720*8       | 816*8       | 1020*8      | 1020*8       | 1232*10      | 1544*16               | 1640*16                    |  |
|                                       | Типоразмер                                               | ПСВ-45-7-15 | ПСВ-63-7-15 | ПСВ-90-7-15 | ПСВ-125-7-15 | ПСВ-200-7-15 | ПСВ-315-14-23 1544*16 | ПСВ-500-14-23 1640*16 7350 |  |





СТД 3073 СТД 3074 СТД 3068 СТД 3069 СТД 3070 СТД 3071



Водоподогреватель предназначен для нагрева воды в системах циклического горячего водоснабжения коммунальных (центральных тепловых пунктах, котельных), общественных, бытовых, производственных и пр. потребителей (зданий, помещений) в т.ч. временных строений, где есть водопроводная вода с давлением до 5 кгс/см².

# 🥸 Устройство и принцип работы

Водоподогреватель представляет собой кожухотрубный теплообменник горизонтального типа, основными узлами которого являются корпус и змеевик. Для установки водоподогревателя в рабочее положение к нему привариваются опоры.

Водоподогреватель оснащен термометром для измерения температуры воды на выходе и манометром - для измерения давления.

Корпус водоподогревателя состоит из цилиндрической обечайки, расположенной горизонтально, с двух сторон к которой приварены эллиптические днища. К эллиптическому днищу приварена горловина для заводки эмеевика.

Змеевик состоит из двух коллекторов, с одной стороны к которым приварены теплообменные трубы, состоящие в свою очередь из труб и калачей, а с другой стороны к коллекторам приварены патрубки с фланцами для подвода и отвода пара. Змеевик оснащен крышкой для подсоединения к горловине водоподогревателя.

В верхней части обечайки расположены муфта для установки термометра, штуцер выхода нагретой воды, штуцер для подсоединения предохранительного клапана.

В нижней части обечайки расположен щтуцер для подвода холодной воды и сливной патрубок с вентилем запорным.

# Технические характеристики

Таб. 94. Технические характеристики водоподогревателей СТД.

| Наименование | Рабочий<br>объем, м <sup>3</sup> | Площадь<br>поверхности<br>теплообмена, м² | Давление<br>рабочее пара<br>и нагр. воды,<br>МПа | Давление<br>пробное в корпу-<br>се и змеевике,<br>МПа | Максимальная<br>температура<br>в змеевике, <sup>0</sup> С | Максимальная<br>температура<br>в корпусе, <sup>0</sup> С | Число трубок<br>змеевика, шт. | Масса, кг |
|--------------|----------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------|-----------|
| СТД 3073     | 0,44                             | 0,475                                     | 0,5                                              | 0,8                                                   | 158                                                       | 75                                                       | 2                             | 210       |
| СТД 3074     | 0,64                             | 0,76                                      | 0,5                                              | 0,8                                                   | 158                                                       | 75                                                       | 2                             | 260       |
| СТД 3068     | 1                                | 1,3                                       | 0,5                                              | 0,8                                                   | 158                                                       | 75                                                       | 3                             | 436       |
| СТД 3069     | 1,6                              | 2,06                                      | 0,5                                              | 0,8                                                   | 158                                                       | 75                                                       | 3                             | 547       |
| СТД 3070     | 2,5                              | 3,16                                      | 0,5                                              | 0,8                                                   | 158                                                       | 75                                                       | 4                             | 670       |
| СТД 3071     | 4                                | 4,87                                      | 0,5                                              | 0,8                                                   | 158                                                       | 75                                                       | 4                             | 956       |

Теплообменное оборудование 87

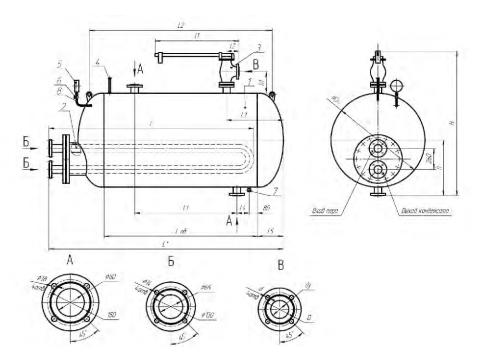



Рис. 56. Габаритные и присоединительные размеры водоподогревателей СТД.

Таб. 95. Габаритные и присоединительные размеры водоподогревателей СТД.

| Наим | менование | Dн   | dy*  | D*  | d* | L*   | Lоб  | L1   | L2   | L3   | L4  | L5  | _    | 11  | 12  | h   | H1  | н    |
|------|-----------|------|------|-----|----|------|------|------|------|------|-----|-----|------|-----|-----|-----|-----|------|
| СТ   | гд 3073   | 712  | 712  | 110 | 14 | 1535 | 860  | 440  | 1210 | 406  | 120 | 206 | 1308 | 745 | 125 | 466 | 276 | 1250 |
| СТ   | ГД 3074   | 712  | 712  | 110 | 14 | 2175 | 1500 | 940  | 1850 | 406  | 120 | 206 | 1975 | 745 | 125 | 466 | 276 | 1250 |
| СТ   | гд 3068   | 916  | 916  | 110 | 14 | 2270 | 1500 | 1000 | 1900 | 556  | 120 | 256 | 1605 | 745 | 125 | 566 | 238 | 1510 |
| СТ   | ГД 3069   | 916  | 916  | 110 | 14 | 3380 | 2600 | 2100 | 3150 | 1656 | 120 | 258 | 2382 | 745 | 125 | 566 | 238 | 1510 |
| СТ   | гд 3070   | 1212 | 1212 | 110 | 14 | 3030 | 2100 | 1400 | 2550 | 1135 | 220 | 331 | 2845 | 745 | 125 | 716 | 238 | 1810 |
| СТ   | ГД 3071   | 1212 | 1212 | 110 | 18 | 4430 | 3500 | 2800 | 3950 | 2456 | 220 | 331 | 4270 | 745 | 155 | 716 | 238 | 1810 |







Подогреватели мазута (ПМ) находят применение в системах мазутоподготовки на котельных и тепловых станциях, используются для разогрева мазута до жидкого состояния перед подачей его через форсунки в камеру сгорания.

Мазут относится к продуктам нефтепереработки и представляет собой один из наиболее эффективных и высококалорийных видов топлива, но при температурах +10...+40С он имеет вязкую консистенцию, вследствие чего возникает необходимость его предварительного разогрева. При нагревании мазут разжижается и может быть подан на форсунки как жидкое топливо.

Применение подогревателей дает возможность наладить бесперебойную и эффективную работу котельных и станций, где в качестве основного топлива используется мазут.



ПМ 25-6 ПМ 40-15 ПМ 40-30

# 🔅 Устройство и принцип работы

Подогреватель мазута представляет собой моноблочный агрегат горизонтальной компоновки, основными конструктивными элементами которого являются цилиндрическая корпусная деталь, съемные торцовые крышки и трубчатый теплообменник.

Мазут посредством насоса подается во внутреннюю трубную систему, а промежуточный теплоноситель (перегретый пар) — в межтрубное пространство. В процессе теплообмена мазут совершает в трубчатом контуре двенадцать ходов, разогревается до необходимой температуры и приобретает требуемую текучесть. Разогретый мазут отводится через выходной патрубок и по технологической цепочке поступает на форсунки.

В процессе подогрева мазута пар в межтрубном пространстве остывает, вследствие чего появляется конденсат. Конденсированная влага отводится из корпуса подогревателя мазута на сборник конденсата и удаляется через отводной патрубок.

# Технические характеристики

Таб. 96. Технические характеристики подогревателей МВН.

| Наименование | Площадь<br>поверхности<br>теплообмена,<br>м <sup>2</sup> | Номиналь-<br>ный расход<br>пара, т/ч | Производи-<br>тельность<br>по мазуту,<br>т/ч | Давление в<br>трубной<br>системе,<br>кгс/см² | Давление в<br>корпусе,<br>кгс/см² | Температура<br>макс.<br>в тр. сист.,<br>°C | Температура<br>макс. в корп,<br>°С | Масса, кг |
|--------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------|-----------|
| ПМ 25-6      | 11,1                                                     | 0,35                                 | 6                                            | 25                                           | 13                                | 125                                        | 250                                | 665       |
| ПМ 40-15     | 30                                                       | 0,4                                  | 15                                           | 40                                           | 13                                | 95                                         | 250                                | 1921      |
| ПМ-40-30     | 110                                                      | 0,8                                  | 30                                           | 40                                           | 10                                | 95                                         | 200                                | 4745      |
| ПМ 10-60     | 210                                                      | 3,6                                  | 60                                           | 10                                           | 10                                | 125                                        | 200                                | 7930      |

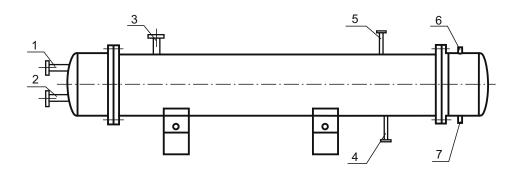



Рис. 57. Габаритные и присоединительные размеры подогревателя мазута (1 — вход мазута, 2 — выход мазута, 3 — вход пара, 4 — выход конденсата, 5 — для отсоса воздуха, 6 — воздушник, 7 — сливная пробка).

Таб. 97. Габаритные и присоединительные размеры водоподогревателей СТД.

| Наименование | Диаметр корпуса Дн, мм | Длина L, мм |
|--------------|------------------------|-------------|
| ПМ 25-6      | 325                    | 3615        |
| ПМ 40-15     | 426                    | 6690        |
| ПМ 40-30     | 630                    | 10840       |
| ПМ 10-60     | 820                    | 11022       |





MBH-300 MBH-400 MBH-500 MBH-600



Пароводяные подогреватели МВН предназначены для нагрева сетевой воды паром котла в межтрубном пространстве, которая движется по трубкам (аналогично принципу работы теплообменника типа ПП). Используются по схеме котелбойлер, в системах горячего водоснабжения (ГВС), тепловых сетях, для отопительных систем, систем охлаждения, теплообмена в технологических процессах разных отраслей промышленности, а так же отопления, насыщенным паром от паропроводов низкого давления или паровых котлов, зданий и сооружений различного назначения.



Конструкция теплообменника сложена из простой системы с трубным пучком в качестве теплоприемника. Подогреватели такого типа работают по следующей системе: вода или другая жидкость, проходящая по трубам, нагревается паром в межтрубном пространстве. Пар для бойлера используется из котлов низкого давления в котельных или из турбин на тепловых станциях. Трубная система подогревателя МВН состоит из латунных трубок диаметром 16 мм и толщиной в 1 мм. Корпус подогревателя МВН оборудован специальным патрубком для отвода собирающегося конденсата, а также патрубком для отсоса воздуха.

# Технические характеристики

Таб. 98. Технические характеристики подогревателей МВН.

| Наименование | Рабочее<br>давление<br>воды, МПа | Рабочее<br>давление<br>греющего<br>пара, МПа | Макс.<br>температура,<br>°С | Поверхность<br>теплообмена,<br>м <sup>2</sup> | Количество<br>ходов,<br>шт | Номинал.<br>расход воды,<br>т/ч | Число<br>трубок, шт | Диаметр<br>корпуса, мм | Длина<br>подогре-<br>вателя, мм | Масса<br>подогре-<br>вателя, кг |
|--------------|----------------------------------|----------------------------------------------|-----------------------------|-----------------------------------------------|----------------------------|---------------------------------|---------------------|------------------------|---------------------------------|---------------------------------|
| MBH-300      | 1,6                              | 1,0                                          | 200                         | 14,5                                          | 2                          | 55                              | 76                  | 325                    | 4640                            | 615                             |
| MBH-400      | 1,6                              | 1,0                                          | 200                         | 19                                            | 2                          | 72                              | 100                 | 426                    | 4640                            | 815                             |
| MBH-500      | 1,6                              | 1,0                                          | 200                         | 40,5                                          | 2                          | 155                             | 214                 | 530                    | 4810                            | 1240                            |
| MBH-600      | 1,6                              | 1,0                                          | 200                         | 62,3                                          | 2                          | 200                             | 330                 | 630                    | 4910                            | 1745                            |

Теплообменное оборудование — 91

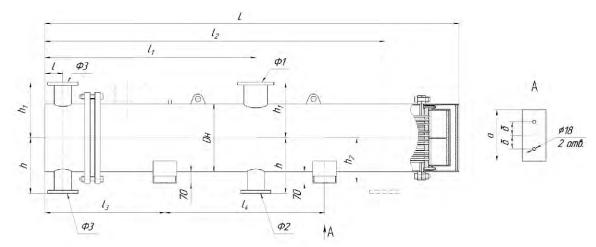



Рис. 58. Габаритные и присоединительные размеры подогревателей МВН.

Таб. 99. Габаритные и присоединительные размеры подогревателей МВН.

|             | цов<br>шт          | Поверхность<br>нагрева, м <sub>2</sub><br>Число трубок, | /бок,           | за, м <sub>2</sub><br>трубок,                | іа, м <sub>2</sub><br>трубок,                  | а, м <sub>2</sub><br>трубок, | кол-во<br>верт. | чение<br><sub>'</sub> ного<br>м² |      |      |     |      | Разме | ры, мм |     |  |  |  |
|-------------|--------------------|---------------------------------------------------------|-----------------|----------------------------------------------|------------------------------------------------|------------------------------|-----------------|----------------------------------|------|------|-----|------|-------|--------|-----|--|--|--|
| Обозначение | Число )<br>(по вод |                                                         | Число тру<br>шт | Среднее кол-во<br>трубок в верт.<br>ряду, шт | Живое сечение<br>трубок одного<br>хода fтр, м² | DH                           |                 |                                  | l1   | ι2   | l3  |      |       | h1     | h2  |  |  |  |
| 1436-01     | _                  | 4,54                                                    | 48              | 6,4                                          | 0,0037                                         | 273                          | 2515            | 140                              | 1314 | -    | 664 | 1250 | 260   | 290    | 270 |  |  |  |
| 1436-02     | 2                  | 7,18                                                    | 76              | 8                                            | 0,0058                                         | 325                          | 2562            | 150                              | 1336 | -    | 688 | 1250 | 290   | 320    | 233 |  |  |  |
| 1436-03     |                    | 8,09                                                    | 86              | 8                                            | 0,0033                                         | 377                          | 2566            | 150                              | 1340 | -    | 690 | 1250 | 320   | 350    | 259 |  |  |  |
| 1436-04     | 4                  | 9,39                                                    | 100             | 8                                            | 0,0038                                         | 426                          | 2568            | 150                              | 1342 | -    | 692 | 1250 | 360   | 380    | 283 |  |  |  |
| 1436-05     | 4                  | 19,9                                                    | 214             | 13                                           | 0,0082                                         | 529                          | 2626            | 160                              | 1380 | -    | 740 | 1250 | 430   | 440    | 335 |  |  |  |
| 1436-06     |                    | 30,6                                                    | 330             | 16                                           | 0,0127                                         | 630                          | 2705            | 190                              | 1424 | -    | 794 | 1250 | 500   | 500    | 385 |  |  |  |
| 1437-01     | 2                  | 9,15                                                    | 49              | 6,4                                          | 0,0037                                         | 273                          | 4555            | 140                              | 554  | 4144 | 664 | 3280 | 260   | 290    | 270 |  |  |  |
| 1437-02     | 2                  | 14,5                                                    | 76              | 8                                            | 0,0058                                         | 325                          | 4602            | 150                              | 586  | 4166 | 686 | 3280 | 290   | 320    | 233 |  |  |  |
| 1437-03     |                    | 16,35                                                   | 86              | 8                                            | 0,0033                                         | 377                          | 4606            | 150                              | 600  | 4150 | 690 | 3250 | 320   | 350    | 259 |  |  |  |
| 1437-04     | 4                  | 19,0                                                    | 100             | 8                                            | 0,0038                                         | 426                          | 4608            | 150                              | 642  | 4152 | 692 | 3250 | 360   | 380    | 283 |  |  |  |
| 1437-05     | 4                  | 40,5                                                    | 214             | 13                                           | 0,0082                                         | 529                          | 4666            | 160                              | 740  | 4160 | 740 | 3200 | 430   | 440    | 335 |  |  |  |
| 1437-06     |                    | 62,3                                                    | 330             | 16                                           | 0,0127                                         | 630                          | 4745            | 190                              | 844  | 4174 | 794 | 3130 | 500   | 500    | 385 |  |  |  |

Таб. 100. Габаритные и присоединительные размеры подогревателей МВН.

|             | Фланец І |            |    |         |     | Флан      | ıец II |       |     | Фла        | нец III |         | Ог         |     |         |
|-------------|----------|------------|----|---------|-----|-----------|--------|-------|-----|------------|---------|---------|------------|-----|---------|
| Обозначение | F        | Размер, мі |    | . п, шт | F   | Размер, м |        | п. шт |     | Размер, мм |         |         | Размер, мм |     | Вес, кг |
|             | Дφ       | D1         | d  | ,       | Dφ  | D1        | d      | ,     | Dφ  | D1         | d       | , п, шт | а          | б   | Dec, Ki |
| 1436-01     | 195      | 160        | 18 | 4       | 180 | 145       | 18     | 4     | 180 | 145        | 18      | 4       | 140        | 40  | 299     |
| 1436-02     | 215      | 180        | 18 | 8       | 180 | 145       | 18     | 8     | 195 | 160        | 18      | 8       | 180        | 60  | 380     |
| 1436-03     | 215      | 180        | 18 | 4       | 180 | 145       | 18     | 4     | 180 | 145        | 18      | 4       | 200        | 70  | 523     |
| 1436-04     | 245      | 210        | 18 | 8       | 195 | 160       | 18     | 4     | 180 | 145        | 18      | 4       | 220        | 80  | 571     |
| 1436-05     | 280      | 240        | 22 | 8       | 215 | 180       | 18     | 8     | 215 | 180        | 18      | 8       | 250        | 95  | 920     |
| 1436-06     | 335      | 295        | 22 | 8       | 280 | 240       | 22     | 8     | 245 | 210        | 18      | 8       | 300        | 120 | 1344    |
| 1437-01     | 195      | 160        | 18 | 4       | 180 | 145       | 18     | 4     | 180 | 145        | 18      | 4       | 140        | 40  | 447     |
| 1437-02     | 215      | 180        | 18 | 8       | 180 | 145       | 18     | 8     | 195 | 160        | 18      | 8       | 180        | 60  | 573     |
| 1437-03     | 215      | 180        | 18 | 4       | 180 | 145       | 18     | 4     | 180 | 145        | 18      | 4       | 200        | 70  | 781     |
| 1437-04     | 245      | 210        | 18 | 8       | 195 | 160       | 18     | 4     | 180 | 145        | 18      | 4       | 220        | 80  | 803     |
| 1437-05     | 280      | 240        | 22 | 8       | 215 | 180       | 18     | 8     | 215 | 180        | 18      | 8       | 250        | 95  | 1285    |
| 1437-06     | 335      | 295        | 22 | 8       | 280 | 240       | 22     | 8     | 245 | 210        | 18      | 8       | 300        | 120 | 1838    |





# Общая информация



#### Описание

Типоразмерный ряд теплообменников представлен 16-ю типами аппаратов с поверхностями теплообмена пластины от 0,08 до 0,55 м2, условными диаметрами от 32 до 200 мм и тепловыми нагрузками от0,02 до 16,0 Гкал/ч.

Наличие широкого ряда теплообменных аппаратов и их возможности позволяют применять их в различных отраслях хозяйства в самых разнообразных технологических процессах:

- нагрев воды для отопления и горячего водоснабжения в тепловых пунктах:
- подогрев воды в бассейнах, нагрев воды в теплицах, подогрев футбольных полей;
- в качестве подогревателей сетевой воды при химподготовке подпиточной воды в энергетике:
- нагрев воды за счет использования пара температурой до 180°C:
- охлаждение эмульсий, масел в машиностроении;
- утилизация тепла выхлопных газов в когенерационных установках;
- в пастеризационно-охладительных установках, для охлаждения молока в молочной промышленности;
- в составе модульных котельных и др.

Теплообменники TPx-GC (GL) — водо-водяные и пароводяные. В составе теплообменника две пластины высокого и низкого гидравлического сопротивления, которые в разном сочетании создают три канала: высокого сопротивления (площадь наибольшая), низкого сопротивления (площадь наименьшая) и среднего сопротивления (площадь средняя). Наличие высоких скоростей теплоносителей в межпластинном пространстве теплообменника создает эффект самоочистки пластин от загрязнений, а равномерное распределение потока по поверхности препятствует появлению застойных зон, что значительно снижает образования отложений на пластинах. Распределение потока может быть параллельным, либо диагональным. При диагональном потоке теплообменник обладает меньшей поверхностью и стоимостью при прочих равных условиях.

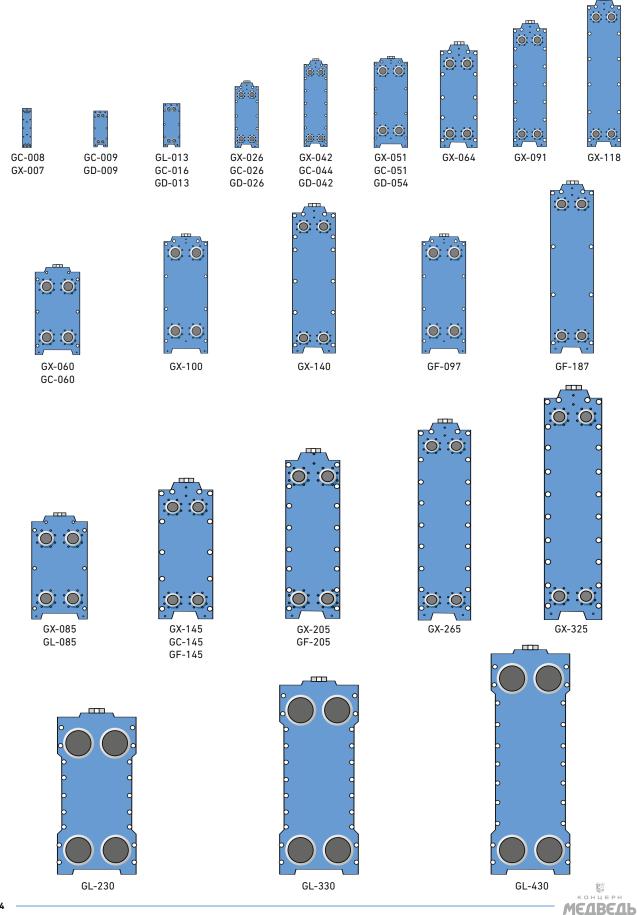
Теплообменники TPx-GX — водо-водяные. В составе теплообменника две пластины высокого и низкого гидравлического сопротивления. За счет расположения прокладки в срединной зоне пластины и возможностью вращения пластины, как по горизонтальной, так и вертикальной осям создается до шести различных комбинаций каналов. Данный тип теплообменников используется в случаях применения расходов или потерь давления по средам резко отличающимися друг от друга, а также при необходимости применения теплообменника с наименьшей поверхностью теплообмена и стоимостью.

**Теплообменники ТРх-GF** — предназначены для нагрева (охлаждения) сред содержащих волокна и твердые частицы, которые могут вызывать закупорку и простой при использовании теплообменников с традиционными пластинами.

Пластины типа GF имеют широкий зазор с глубиной канала от двух до пяти раз больше, чем у традиционных пластин, что позволяет среде с волокнами и твердыми частицами свободно протекать. Это также дает возможность пластинам достигать высокой эффективности при работе с агрессивными средами, суспензиями и твердыми частицами.

**Теплообменники TPx-GW** — с полусварными пластинами типа GW предназначены специально для работ с аммиаком и другими агрессивными средами.

Особенностью этих теплообменников являются симметричные и ассиметричные пластины, сваренные вместе лазером, образуя заваренный канал, или элемент, что обеспечивает надежную работу.




#### ) Преимущества

- 1. Экономичность и простота обслуживания. При засорении пластинчатый теплообменник может быть разобран, промыт и собран двумя работниками в течение 4 6 часов.
- 2. Низкая загрязняемость поверхности теплообмена вследствие высокой турбулентности потока жидкости, образуемой рифлением, а также качественной полировки теплообменных пластин.
- 3. Стоимость замены уплотнительной прокладки колеблется в пределах 15 25% от стоимости пластинчатого теплообменника.
- 4. Стоимость монтажа пластинчатого теплообменника составляет 2 4% от стоимости оборудования. Низкие массогабаритные показатели пластинчатого теплообменника позволяют сэкономить на монтаже и уменьшить площади, отводимые под тепловой пункт.
- 5. Индивидуальный расчет каждого пластинчатого теплообменника по оригинальной программе завода-изготовителя позволяет подобрать его конфигурацию в соответствии с гидравлическим и температурным режимами по обоим контурам.
- 6. Изменяемость под задачи: в случае необходимости площадь поверхности теплообмена в пластинчатом теплообменнике может быть легко уменьшена или увеличена простым извлечением или добавлением пластин.
- 7. Конденсация водяного пара в пластинчатом теплообменнике позволяет обходиться без специального доохладителя, т.к. процесс конденсации и доохлаждения конденсата можно осуществить в одном аппарате.
- 8. Устойчивость к вибрациям: пластинчатые теплообменники высокоустойчивы к наведенной двухплоскостной вибрации.
- 9. Меньшие последствия при гидроударах. Самое негативное последствие гидравлического удара для разборного пластинчатого теплообменника выход из строя прокладок. В то время как для паяного или сварного возможно повреждение. 10. Меньше ограничений в работе: замерзание воды в пакете пластин не приводит к фактическому повреждению аппарата. После оттайки пластинчатый теплообменник готов к эксплуатации.

Теплообменное оборудование 93

# Модельный ряд разборных теплообменников пластинчатых



# Технические характеристики

Таб. 101. Технические характеристики теплообменников пластинчатых.

| Наименование                                                                              | Показатель                                                                                                      |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Максимальное рабочее (расчетное) давление теплообменников<br>в соответствии с маркировкой | T - 6 κг/cм2<br>N - 10 κг/cм2<br>P - 16 κг/cм2<br>S - 25 κг/cм2                                                 |
| Материалы уплотнений и макс. рабочая температура                                          | Нитрил - 140°C<br>EPDM - 170°C<br>FKM, Viton® - 180°C                                                           |
| Материал пластин, устанавливаемых в пластинчатые теплообменники                           | AISI 304 / EN 1.4301<br>AISI 316 / EN 1.4401<br>Титан Gr.1<br>254 SMO<br>C-276<br>Титан Gr.11<br>Никель 200/201 |
| Компановка пластин                                                                        | 1X— одноходовой<br>2X— двухходовой<br>2XЦ— двухходовой с циркуляцией<br>2XБГВ— двухходовой моноблок             |

# Габаритные и присоединительные размеры

Таб. 102. Габаритные и присоединительные размеры теплообменников пластинчатых.

| Наименование    | Диаметр<br>присоединения,<br>Ду | В,мм | Н,мм | <b>D</b> ,мм | Е,мм | <b>Г</b> ,мм |  |
|-----------------|---------------------------------|------|------|--------------|------|--------------|--|
| GC-009 PR/PI    | 40                              | 250  | 725  | 90           | 555  | 100          |  |
| GD-009 PR/PI    | 40                              | 200  | 723  | 70           | 333  | 100          |  |
| GL-013 PR/PI    |                                 |      |      |              |      |              |  |
| GL-013 NR/NI    |                                 |      |      |              |      |              |  |
| GC-016 PR/PI/NR | 50/65                           | 320  | 832  | 140          | 592  | 135          |  |
| GL-016 PR/PI    | 30/03                           | 320  | 032  | 140          | 372  | 133          |  |
| GD-013 PR/PI    |                                 |      |      |              |      |              |  |
| GD-016 PR/PI    |                                 |      |      |              |      |              |  |
| GX-026 NR       | 100                             | 450  | 1166 | 220          | 779  | 226          |  |
| GC-026 NR       | 100                             | 400  | 1.00 | 220          | ,,,  |              |  |
| GX-026 PR       |                                 |      |      |              |      |              |  |
| GC-026 PR       | 100                             | 450  | 1265 | 220          | 779  | 226          |  |
| GD-026 PR       |                                 |      |      |              |      |              |  |
| GX-042 NR       | 100                             | 450  | 1166 | 220          | 1189 | 226          |  |
| GC-044 NR       | 100                             | 400  | 1100 | 220          |      | 220          |  |
| GX-042 PR       |                                 |      |      |              |      |              |  |
| GD-042 PR       | 100                             | 450  | 1675 | 220          | 1189 | 226          |  |
| GC-044 PR       |                                 |      |      |              |      |              |  |
| GX-051 NR       |                                 |      |      |              |      |              |  |
| GC-051 NR       | 150                             | 585  | 1730 | 300          | 1143 | 300          |  |
| GC-054 NR       |                                 |      |      |              |      |              |  |
| GX-051 PR       |                                 |      |      |              |      |              |  |
| GC-051 PR       | 150                             | 630  | 1730 | 300          | 1143 | 300          |  |
| GC-054 PR       |                                 |      |      |              |      |              |  |

Теплообменное оборудование 99

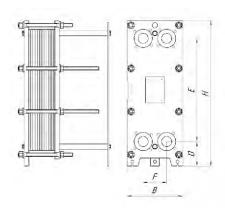



Рис. 59. Габаритные и присоединительные размеры теплообменника пластинчатого TPx 2.

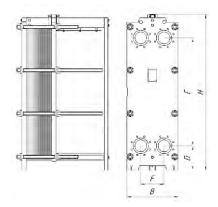



Рис. 60. Габаритные и присоединительные размеры теплообменника пластинчатого TPx 3.

#### Обозначение теплообменников.

#### TPx-GCP-009-H-5-PR-17-1X

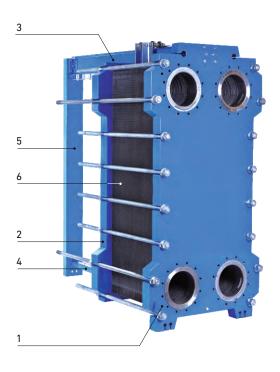
**ТРх** – теплообменник разборный

**GC** – модель пластинчатого теплообменника (GL, GX, GD, GF, GW)

Р – параллельный поток в каналах (D – диагональный )

**009** – типоразмер теплообменника (013, 016, 026, ... )

**H** – тип канала (H – высокого сопротивления; M – среднего сопротивления; L – низкого сопротивления)


**5** – толщина пластин, мм

**PR** – тип рамы (PR – расчётное давление 16 кг/см2 с концевой опорой; PI – расчётное давление 16 кг/см2 без концевой опоры).

17 – количество пластин в теплообменнике

**1X** – компоновка пластин (1X – одноходовой)





# **√** Назначение

Пластинчатые теплообменники TPx-GC (GL) предназначены для осуществления теплообмена между различными средами: жидкость-жидкость и паржидкость.

# 🧔 Конструкция и принцип работы

Теплообменники состоят из следующих основных компонентов: неподвижной (1) и подвижной (2) плит, верхней (3) и нижней (4) направляющих, опорной стойки (5) и пластин с прокладками (6).

Теплообменники полностью разборные. Пакет пластин подвешивается на верхней направляющей и выравнивается с помощью нижней направляющей. Пакет удерживается в сжатом состоянии между неподвижной и подвижной плитами при помощи стяжных болтов.

Такая конструкция позволяет легко разбирать теплообменники для осмотра, очистки и модернизации.

Теплообменники перед отгрузкой испытывается на давление, превышающее рабочее на 20 %.

Высокая эффективность теплопередачи достигается за счёт применения тонких гофрированных пластин, которые являются естественными турбулизаторами потока и, вследствие своей малой толщины, обладают малым термическим сопротивлением.

Герметичность каналов и распределение теплоносителей по каналам обеспечивается с помощью резиновых прокладок, расположенных по периметру пластины.

Прокладка, расположенная по периметру пластины, охватывает два угловых отверстия, через которые входит поток рабочей среды в межпластинный канал и выходит из него, а через два других отверстия, изолированных дополнительно кольцевыми уплотнениями, встречный поток проходит транзитом. Вокруг этих отверстий имеется двойное уплотнение со специальными канавками меньшей толщины, которое гарантирует герметичность каналов, а в случае протечек определить их визуально и своевременно заменить прокладку. Уплотнительные прокладки крепятся к пластине таким образом, что после сборки и сжатия пластин в аппарате образуются две системы герметичных каналов - один по греющей среде, другой по нагреваемой.

#### Виды пластин

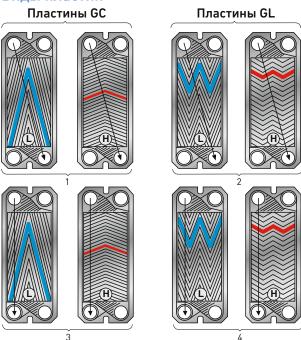



Рис. 61. Виды пластин.

Применение в одном аппарате жестких и мягких пластин увеличивает возможности подбора теплообменника с минимальной поверхностью теплообмена и минимальной стоимостью.

В теплообменниках могут применяться три типа пакета пластин (каналов), отличающихся друг от друга углами наклона гофр:

- L каналы (все пластины L) применяется при больших значениях расхода сред и разности температур;
- М каналы (чередование пластин H и L) применяется при средних значениях расхода сред и разности температур;
- Н каналы (все пластины H) применяется при низких значениях расхода и разности температур.

Пластины изготавливаются из нержавеющей стали пищевого назначения AISI316, AISI 304.

Материалом прокладок для сред вода-вода служит резиновая смесь пищевого назначения EPDM, физические свойства которой позволяют выдерживать следующие максимальные значения температур: 160 °C - при давлении 16,0 кг/см²; 165 °C - при давлении 10,0 кг/см²; 170 °C - при давлении 6,0 кг/см².

Для сред пар-вода используется резиновая смесь FKM GB (Viton), максимальные температурные значения которой составляют: 160 °C - при давлении 12,0 кг/см²; 180 °C - при давлении 6,0 кг/см².

Теплообменное оборудование

Пластины изготавливаются с двумя различными углами наклона гофр к горизонтальной оси: жёсткая пластина с углом 60° (1,3) и мягкая - с углом 30° (2,4).

Жёсткие пластины H характеризуются большой тепловой производительностью и большими потерями давления, мягкие L - меньшей тепловой производительностью и меньшими потерями давления.

Пластины могут быть собраны в пакет с параллельным распределением потока в межпластинном пространстве (3,4) или диагональным (1,2).

Прокладки изготавливаются цельнотянутыми, в виде единой детали, что обеспечивает их точную форму и отсутствие ослабленных переходных участков.

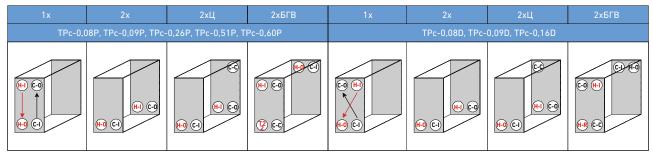
Существует два варианта крепления прокладок: легко устанавливаемые прокладки с креплением на клипсах и прокладки на клею по специально разработанной технологии. Крепление прокладок к пластинам производится на клипсах, что обеспечивает удобство и быстроту их установки.

В теплообменниках могут применяться три типа пакета пластин (каналов), отличающихся друг от друга углами наклона гофр:

- L каналы (все пластины L) применяется при больших значениях расхода сред и разноститемператур;
- М каналы (чередование пластин H и L) применяется при средних значениях расхода сред и разности температур;

- Н каналы (все пластины H) применяется при низких значениях расхода и разности температур.

Пластины изготавливаются из нержавеющей стали пищевого назначения IAISI316, AISI 304.


Материалом прокладок для сред вода-вода служит резиновая смесь пищевого назначения EPDM, физические свойства которой позволяют выдерживать следующие максимальные значения температур: 160 °C - при давлении 16,0 кг/см2; 165 "С -при давлении 10,0 кг/см2; 170 °C - при давлении 6,0 кг/см2.

Для сред пар-вода используется резиновая смесь FKM GB (Viton), максимальные температурные значения которой составляют: 160 °C - при давлении 12,0 кг/см2; 180 °C - при давлении 6,0 кг/см2.

Прокладки изготавливаются цельнотянутыми, в виде единой детали, что обеспечивает их точную форму и отсутствие ослабленных переходных участков.

Существует два варианта крепления прокладок: легко устанавливаемые прокладки с креплением на клипсах и прокладки на клею по специально разработанной технологии. Крепление прокладок к пластинам производится на клипсах, что обеспечивает удобство и быстроту их установки.

Таб. 103. Наличие патрубков на плитах.



#### Обозначения:

«C-O» – выход нагреваемой среды

«С-I» – вход нагреваемой среды

«**H-0**» – выход греющей среды

**«Н-І»** – вход греющей среды

«C-C» - вход циркуляционной нагреваемой среды

«**H-R**» – вход обратной среды отопления



Таб. 104. Типы пластин GC.

|      | Н - высокого | сопротивления |                       | L-   | низкого сопротивлені | ия   |
|------|--------------|---------------|-----------------------|------|----------------------|------|
| 1234 | 0230         | 1004          | 0000                  | 1234 | 0230                 | 1004 |
|      |              |               | Р - параллельный пото | к    |                      |      |
|      |              |               | RD                    |      |                      |      |
|      |              |               |                       |      |                      |      |
|      |              |               | LU                    |      |                      |      |
|      |              |               |                       |      |                      |      |
|      |              |               | D - диагональный пото | К    |                      |      |
|      |              |               | LD                    |      |                      |      |
|      |              |               |                       |      |                      |      |
|      |              |               | RU                    |      |                      |      |
|      |              |               |                       |      |                      |      |

Таб. 105. Типы прокладок.

| P - параллельный поток | D - диагональный поток |    |  |
|------------------------|------------------------|----|--|
| LU                     | LU                     | RU |  |
| LU                     | LU                     | RU |  |

Таб. 106. Типы каналов.



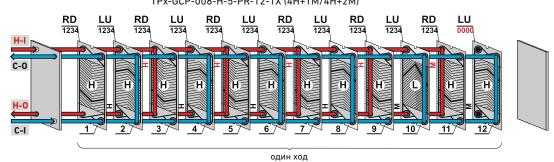
Теплообменное оборудование — 99

Таб. 107. Типы пластин GL.

|      | Н - высокого | сопротивления |                                  | L-   | низкого сопротивлен | ия   |
|------|--------------|---------------|----------------------------------|------|---------------------|------|
| 1234 | 0230         | 1004          | 0000                             | 1234 | 0230                | 1004 |
|      |              | F             | <sup>9</sup> - параллельный пото | Ж    |                     |      |
|      | T I          |               | ORD                              | T    |                     |      |
|      |              |               |                                  |      |                     |      |
|      |              |               | ORU                              |      |                     |      |
|      |              |               |                                  |      |                     |      |
|      |              | [             | ) - диагональный пото            | К    |                     |      |
|      | T            |               | ORD                              | T    |                     |      |
|      |              |               |                                  |      |                     |      |
|      |              |               | ORU                              |      |                     |      |
|      |              |               |                                  |      |                     |      |

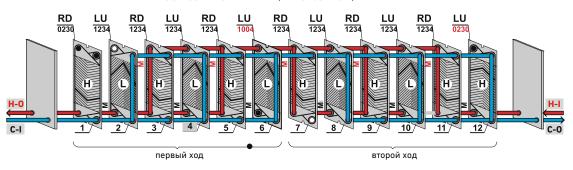
Таб. 108. Типы прокладок.

| Р - паралл | пельный поток | D - диагональный поток |      |  |
|------------|---------------|------------------------|------|--|
| ROLU       | RORU          | LOLU                   | RORU |  |
|            |               |                        |      |  |


Таб. 109. Типы каналов.

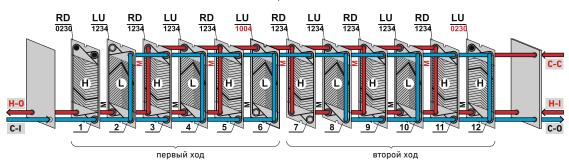


#### Компоновка пластин


#### Компоновка пластин TPx-GCP-...-1X

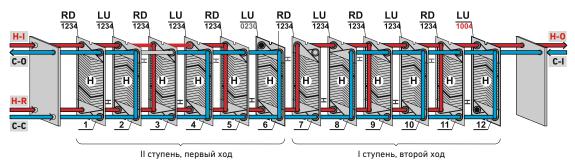
#### TPx-GCP-008-H-5-PR-12-1X (4H+1M/4H+2M)




#### Компоновка пластин ТРх-GCP-...-2X

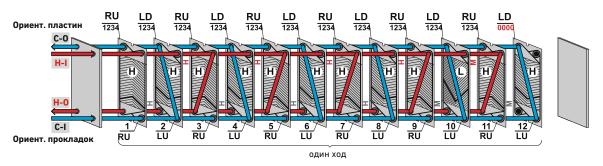
#### TPx-GCP-009-M-5-PR-12-2X (2M+3M/3M+3M)




#### Компоновка пластин TPx-GCP-...-2XЦ

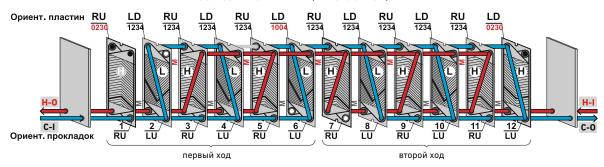
#### TPx-GCP-009-M-5-PR-12-2XЦ (2M+3M/3M+3M)




#### Компоновка пластин TPx-GCP-...-2XБГВ

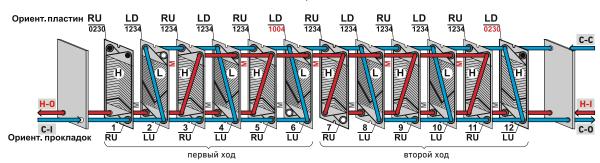
#### ТРх-GCP-008-H-5-PR-12-2ХБГВ (2H+3H/3H+3H)




#### Компоновка пластин TPx-GCD-...-1X

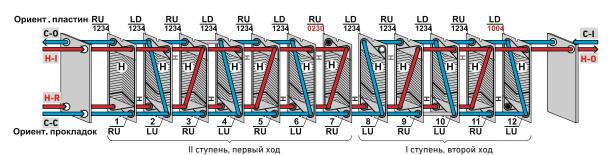
#### TPx-GCD-008-M-5-PR-12-1X (4H+1M/4H+2M)



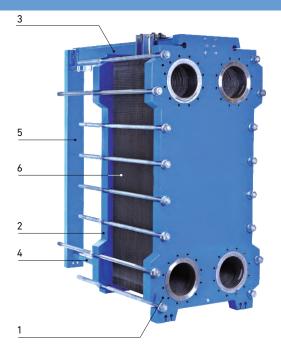

#### Компоновка пластин TPx-GCD-...-2X

#### TPx-GCD-009-M-5-PR-12-2X (2M+3M/3M+3M)




#### Компановка пластин ТРх-GCD-...-2ХЦ

#### TPx-GCD-009-M-5-PR-12-2XЦ (2M+3M/3M+3M)




#### Компоновка пластин TPx-GCD-...-2XБГВ

#### ТРх-GCD-008-H-5-PR-12-2ХБГВ (2H+3H/3H+3H)







# 🧔 Конструкция и принцип работы

Прокладка, расположенная по периметру пластины, охватывает два угловых отверстия, через которые входит поток рабочей среды в межпластинный канал и выходит из него, а через два других отверстия, изолированных дополнительно кольцевыми уплотнениями, встречный поток проходит транзитом. Вокруг этих отверстий имеется двойное уплотнение со специальными канавками меньшей толщины, которое гарантирует герметичность каналов, а в случае протечек определить их визуально и своевременно заменить прокладки. Уплотнительные прокладки крепятся к пластине таким образом, что после сборки и сжатия пластин в аппарате образуются две системы герметичных каналов - один по греющей среде, другой по нагреваемой.



Пластинчатые теплообменники ТРх предназначены для осуществления теплообмена между различными средами: жидкость-жидкость.

Теплообменники состоят из следующих основных компонентов: неподвижной (1) и подвижной (2) плит, верхней (3) и нижней (4) направляющих, опорной стойки (5) и пластин с прокладками (6).

Теплообменники полностью разборные. Пакет пластин подвешивается на верхней направляющей и выравнивается с помощью нижней направляющей. Пакет удерживается в сжатом состоянии между неподвижной и подвижной плитами с помощью стяжных болтов.

Такая конструкция позволяет легко разбирать теплообменники для осмотра, очистки и модернизации.

Теплообменники перед отгрузкой испытываются на давление, превышающее рабочее на  $20\,\%$ .

Высокая эффективность теплопередачи достигается за счёт применения тонких гофрированных пластин, которые являются естественными турбулизаторами потока и, вследствие своей малой толщины, обладают малым термическим сопротивлением

Герметичность каналов и распределение теплоносителей по каналам обеспечивается с помощью резиновых прокладок, расположенных по периметру пластины.

Пластины изготавливаются с двумя различными углами наклона гофр к горизонтальной оси: жёсткая пластина с углом  $60^{\circ}(1)$  и мягкая - с углом  $30^{\circ}(2)$ .

Жёсткие пластины Н в отличии от мягких L характеризуются большой тепловой производительностью и большими потерями давления.

Отличительными особенностями данных пластин является наличие канавок для уплотнений с двух сторон пластины. Такая конструкция пластин позволяет за счёт вращения пластин H и L вокруг горизонтальных и вертикальной осей создавать до шести различных комбинаций пакетов пластин (каналов).



Рис. 62. Виды пластин.

Многообразие исполнений каналов позволяет значительно увеличить возможности подбора теплообменника с требуемыми характеристиками, минимальной поверхностью теплообмена и минимальной стоимостью.

Прокладки изготавливаются цельнотянутыми, в виде единой детали, что обеспечивает их точную форму и отсутствие ослабленных переходных участков.

В одном теплообменнике может применяться два из шести типов каналов:

**LS канал** (все пластины L) низкого гидравлического сопротивления;

LD канал (все пластины L) низкого гидравлического сопротивления:

**HS канал** (все пластины H) высокого гидравлического сопротивления:

**HD канал** (все пластины H) высокого гидравлического сопротивления;

MS канал (пластины H и L) среднего гидравлического

**MD** канал (пластины H и L) среднего гидравлического сопротивления;

Начальная прокладка и концевые прокладки при двухходовых схемах компоновки имеют половинную толщину.

Существует два варианта крепления прокладок: легко устанавливаемые прокладки с креплением на клипсах и прокладки на клею, приклеиваемые по специально разработаннной технологии.

Таб. 110. Типы пластин GX.

|                                         | Н - высокого | сопротивления |                                  | L-      | низкого сопротивлен | ия   |
|-----------------------------------------|--------------|---------------|----------------------------------|---------|---------------------|------|
| 1234                                    | 0230         | 1004          | 0000                             | 1234    | 0230                | 1004 |
|                                         |              | F             | <sup>2</sup> - параллельный пото | к       |                     |      |
|                                         |              |               | ORD                              |         |                     |      |
| E B B B C C C C C C C C C C C C C C C C | E B          | E B B         |                                  | R S K   | R K                 | s s  |
|                                         | I            |               | ı                                |         | R                   |      |
| B E C C                                 | B E E        | E C C         | B E E                            |         | s S                 |      |
|                                         | G            |               |                                  |         | S                   |      |
| C C C                                   | C B          | C G           | C C B                            | L S S   | L S                 | S S  |
|                                         | С            |               |                                  |         | L                   |      |
| C C                                     | C C          | C C C         |                                  | S C C R | S R                 | S R  |

Таб. 111. Типы прокладок.

| Р - парал | лельный поток | D - ди | агональный поток |
|-----------|---------------|--------|------------------|
| ROLU      | RORU          | LOLU   | RORU             |
|           |               |        |                  |

Толщина прокладок начальных и концевых в два раза меньше, чем толщина промежуточных.

Таб. 112. Наличие патрубков на плитах.



#### Обозначения:

«С-О» – выход нагреваемой среды

«С-I» — вход нагреваемой среды

«**H-0**» – выход греющей среды

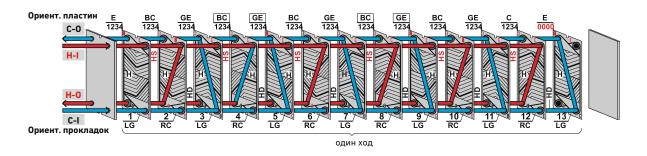
«**H-I**» – вход греющей среды

«C-C» - вход циркуляционной нагреваемой среды

**«Н-R»** — вход обратной среды отопления



Таб. 113. Формирование каналов.

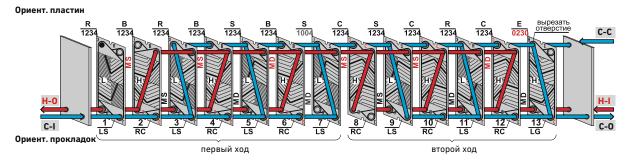

| Типы<br>каналов                           | Исходное положение                          | Вращение пластины                           | Перемещение пластины                    | Формирование<br>канала |
|-------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------|------------------------|
| НЅ пластины Н+Н<br>высокого сопротивления |                                             |                                             |                                         | B H C C                |
| НО пластины Н+Н<br>высокого сопротивления |                                             |                                             |                                         | C H H C C              |
| MS пластины H+L<br>среднего сопротивления | E B R S S S S                               | E B R S S S                                 | B E C S S                               | B H C S S              |
| МD пластины H+L<br>среднего сопротивления | E B R C S S S S S S S S S S S S S S S S S S | E B R K K S S S S S S S S S S S S S S S S S | C R R R R R R R R R R R R R R R R R R R | C R K                  |
| LS пластины L+L<br>низкого сопротивления  | R R S S S S S S S S S S S S S S S S S S     | R R R R R R R R R R R R R R R R R R R       | K R R S S S S S S S S S S S S S S S S S | K S S S S              |
| LD пластины L+L<br>низкого сопротивления  | R R R S S S S S S S S S S S S S S S S S     | R R R R S S S S S S S S S S S S S S S S     | L S R C S S S S                         | R S S                  |

Теплообменное оборудование — 105

#### Компоновка пластин

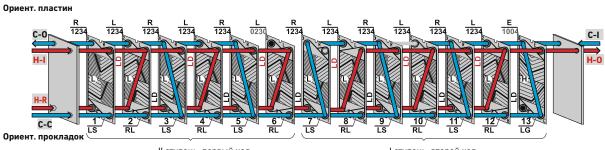
#### Компоновка пластин TPx-GXD-...-1X

TPx-GXD-026-H-5-PR-13-1X (6HS+0HD/0HS+6HD)




#### Компоновка пластин TPx-GXD-...-2X

# ТРх-GXD-026-M-5-PR-13-2X (0MS+3MD/0MS+3MD) Ориент. пластин 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 123


#### Компоновка пластин TPx-GXD-...-2XЦ

TPx-GXD-026-M-5-PR-13-2XЦ (0MS+3MD/0MS+3MD)



#### Компоновка пластин ТРх-GXD-...-2XБГВ

TPx-GXD-026-L-5-PR-13-2 ХБГВ (0LS+6LD/0LS+6LD)



II ступень, первый ход I ступень, второй ход



# ЭНЕРГОСБЕРЕГАЮЩЕЕ ОБОРУДОВАНИЕ

#### Общая информация



#### ) Термомайзеры

В данном каталоге представлено высокоэффективное энергосберегающее оборудование (термомайзер P-2.T.P-7.T, P-8.T), которое применяется в системах отопления и горячего водоснабжения жилых, общественных и производственных зданий и сооружений и предназначено для автоматического регулирования температуры в целях экономии тепловой энергии. Вышеуказанное оборудование доступно по цене и оптимально к внедрению всеми потребителями. При этом размер экономии тепловой энергии составляет до 40%. Выпускаемое «КОНЦЕРНОМ МЕДВЕДЬ» энергосберегающее оборудование, с успехом работает более чем в 43 регионах России, а также в странах СНГ.

Кроме того, «КОНЦЕРН МЕДВЕДЬ» осуществляет изготовление широкого спектра специального оборудования и деталей по индивидуальным заявкам заказчиков.



#### Преимущества термомайзеров

- Удобство монтажа и обслуживания;
- высокая экономическая эффективность;
- простота и надежность конструкции;
- ремонтопригодность;
- понижение температуры воздуха внутри помещений в ночные часы и в выходные дни по сигналам встроенного таймера.



#### Устройства управления Теплур

- Простота в управлении;
- вся информация выводится на цифровой дисплей; -два режима просмотра параметров:
- возможность изменения значения отдельных параметров; энергонезависимая память данных.

Встроенный таймер позволяет понижать температуру в ночные часы и в выходные дни. Параметры термомайзера могут быть заданы с помощью встроенной клавиатуры или от ЭВМ верхнего уровня через интерфейс RS-232.

При автоматическом регулировании температуры с помощью регулирующего клапана или элеватора, устройство обеспечивает следующий алгоритм вычислений:

- определение расчетной температуры теплоносителя на выходе регулятора для системы отопления;
- определение сигнала рассогласования.

# 31 ТЕРМОМАЙЗЕР Р-2.Т



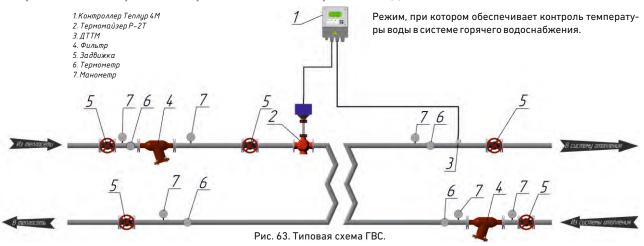
# **√** Назначение

- Для автоматического регулирования температур вторичного теплоносителя (горячей воды) в закрытых системах горячего водоснабжения путем изменения расхода первичного теплоносителя:
- для автоматического изменения температуры горячей воды в необходимое время в соответствии с функциональными возможностями устройства управления;
- для комплектования оборудования центральных и индивидуальных тепловых пунктов (ЦТП, ИТП);
- для применения в системах отопления с насосным смешением, в системах вентиляции и кондиционирования воздуха и др. технологических установках.

# П Условия эксплуатации

- Окружающая среда воздух;
- температура окружающей среды от плюс 5 до плюс 45 С;
- относительная влажность воздуха до 85% при температуре плюс 25°C;
- атмосферное давление от 84,0 до 106,6 кПа;
- температура теплоносителя в питающей сети до 150°C;
- напряжение питания или напряжение управляющих импульсов от 187 до 242 В,частоты 501 Гц.

Термомайзеры изготавливаются 8 видов в соответствии с таблицей.


#### Варианты исполнения

Таб. 114. Варианты исполнения термомайзеров Р-2.Т.

| Обозначение исполнения<br>термомайзера | Ду присоединения<br>клапана, мм | Условная пропускная<br>способность, м3/ч | Масса, кг | Примечание  |
|----------------------------------------|---------------------------------|------------------------------------------|-----------|-------------|
| P-2.T-25-2,5                           | 25                              | 2,5                                      | 17,5      |             |
| P-2.T-25-4,0                           | 25                              | 4,0                                      | 17,5      |             |
| P-2.T-25-6,0                           | 25                              | 6,0                                      | 17,5      |             |
| P-2.T-50-10,0                          | 50                              | 10,0                                     | 23,0      |             |
| P-2.T-50-16,0                          | 50                              | 16,0                                     | 23,0      |             |
| P-2.T-50-25,0                          | 50                              | 25,0                                     | 23,0      |             |
| P-2.T-80-56,0*                         | 80                              | 56,0                                     | 52,0      | спец. заказ |
| P-2.T-80-71,0*                         | 80                              | 71,0                                     | 52,0      | спец. заказ |



#### Применение термомайзеров в системах горячего водоснабжения



#### Применение термомайзеров в системах отопления здания

Режим работы, при котором устройство обеспечивает контроль и ограничение температуры теплоносителя в здании.

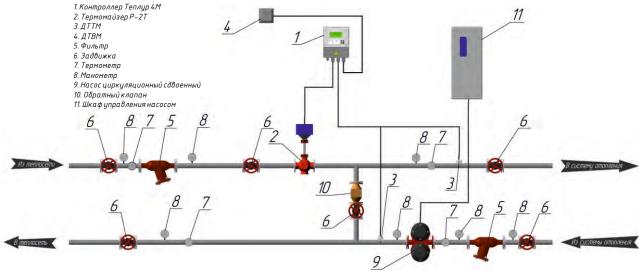



Рис. 64. Типовая схема отопления здания.

#### Применение термомайзеров в системах отопления комнаты

Режим, при котором устройство обеспечивает контроль температуры воздуха в отдельной комнате, например, где установлено оборудование, требующее для своей работы поддержания постоянной температуры.

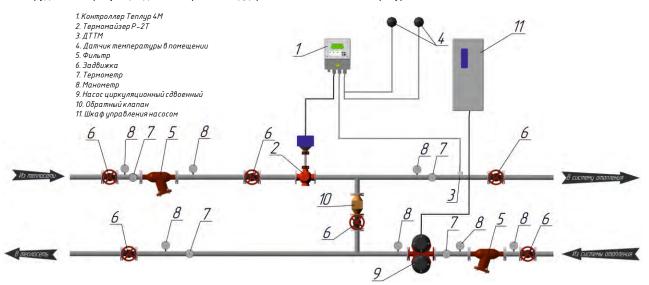



Рис. 65. Типовая схема отопления комнаты.



Термомайзеры выполнены на базе проходных клапанов типа КП, (в дальнейшем - клапаны) управление которыми осуществляется устройствами управления типа "Теплур".

Регулирование температуры вторичного теплоносителя (воды, воздуха) осуществляется изменением количества первичного теплоносителя, поступающего в теплообменник или смесительное устройство, путем регулирования сечения проточной части клапана.

При отклонении текущей температуры вторичного теплоносителя от заданной или расчетной, устройство управления подает в электромоторный привод клапана механизм электрический исполнительный (МЭИ) управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя.

Информация о значениях контролируемых температур поступает с датчиков температуры.

В регуляторах для систем горячего водоснабжения устанавливается один датчик температуры горячей воды.

Количество датчиков температуры для других случаев применения регуляторов определяется по согласованию с заказчиком.



#### 🔅 Устройство и работа преходного клапана КП

В основе работы клапана лежит принцип управления потоком рабочей среды путем регулирования сечения проточной части. Регулирование температуры вторичного теплоносителя (воды, воздуха) осуществляется изменением количества первичного теплоносителя, поступающего в теплообменник или систему отопления путем регулирования пропускной способности клапана.

При отклонении текущей температуры вторичного теплоносителя от заданной или расчетной устройство управления подает в МЭИ клапана управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя.

На рисунке 1 приведены усредненные пропускные характеристики клапанов в зависимости от положения регулирующего органа.

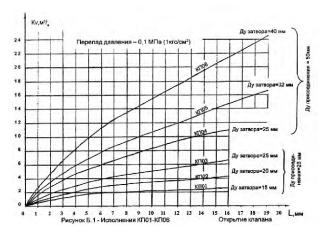



Рис. 66 .Расчетные пропускные характеристики клапана КП01-КП06.

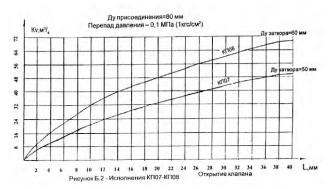



Рис. 67. Расчетные пропускные характеристики клапана КП01исп. 07-08.

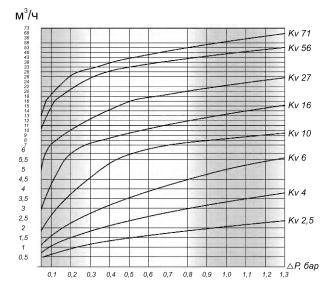



Рис. 68. Зависимость расхода, м3/ч от перепада давления на клапане. Бар.



# Технические характеристики

Таб. 115. Технические характеристики термомайзеров Р-2.Т.

| Параметры                                                                            | Значение |
|--------------------------------------------------------------------------------------|----------|
| Максимальная потребляемая электрическая мощность (от сети 220В, 50 Гц) Вт, не более: |          |
| - в статическом режиме в момент прохождения управляющих импульсов                    | 10       |
| - в момент прохождения управляющих импульсов                                         | 55       |
| Температура теплоносителя в питающей сети, °С                                        | До 150   |
| Рабочее давление теплоносителя, Мпа, не более                                        |          |
| исполнений клапана КП01-КП06                                                         | 1,6      |
| исполнений клапана КП07, КП08                                                        | 0,7      |
| Температура объекта регулирования (горячей воды), °С                                 | 10-90    |

## Габаритные размеры

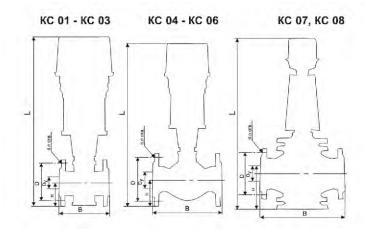



Рис. 69. Габаритные и присоединительные размеры термомайзеров Р-2.Т.

Таб.. 116. Габаритные и присоединительные размеры термомайзеров Р-2.Т.

| Обозначение   | Исполнение | Размеры, мм |     |     |     |    |    |   |
|---------------|------------|-------------|-----|-----|-----|----|----|---|
| термомайзера  |            | В           | Н   | L   | D   | Dy | d  | n |
| P-2.T-25-2,5  | KC 01      |             |     |     |     |    |    |   |
| P-2.T-25-4,0  | KC 02      | 120         | 115 | 486 | 85  | 25 | 14 | 4 |
| P-2.T-25-6,0  | KC 03      |             |     |     |     |    |    |   |
| P-2.T-50-10,0 | KC 04      |             |     |     |     |    |    |   |
| P-8.T-50-16,0 | KC 05      | 200         | 150 | 562 | 125 | 50 | 18 | 4 |
| P-8.T-50-27,0 | KC 06      |             |     |     |     |    |    |   |
| P-8.T-80-56,0 | KC 07      | 306         | 197 | 723 | 160 | 80 | 18 | 4 |
| P-8.T-80-71,0 | KC 08      | 300         | 177 | 723 | 100 | 60 | 10 | 4 |



# ТЕРМОМАЙЗЕР Р-7.Т





- Для применения в местных и центральных тепловых пунктах (МТП, ЦТП) для автоматического регулирования температуры теплоносителя (воды) в системах теплоснабжения жилых, общественных, административных и прочих помещений с целью создания комфортных условий внутри помещений и экономии тепла.



- 1. Устройство управления типа «ТЕПЛУР», выполненное на базе однокристальной микро-ЭВМ.
- 2. Элеватор гидравлический с регулируемым сечением сопла, совмещенный с приводом.
- 3. Датчики температуры: теплоносителя в подающем и обратном трубопроводах системы отопления, наружного воздуха, воздуха внутри помещений в двух точках.

# 🔅 Функции

• Поддержание заданной температуры воздуха внутри помещений в зависимости от температуры наружного воздуха по заданному графику отопления;

Автоматическое поддержание заданной температуры воздуха внутри помещения по усредненной температуре воздуха в двух контрольных точках помещений;

- поддержание температуры теплоносителя в обратном трубопроводе системы отопления;
- понижение температуры воздуха внутри помещений в ночные часы и в выходные дни по сигналам встроенного таймера;
- задание параметров термомайзера с помощью встроенной клавиатуры или через интерфейс RS-232 от ЭВМ верхнего уровня.

Термомайзеры изготавливаются 6 видов в соответствии с таб...

Таб. 117. Виды исполнения термомайзеров Р-7.Т.

| Обозначение<br>исполнения<br>термомайзера | ДУ сопла<br>элеватора, мм | Т/пр.,<br>Гкал/ч+15% | Масса, кг |
|-------------------------------------------|---------------------------|----------------------|-----------|
| P-7.T-4-0,06                              | 4,0                       | 0,06                 | 34,5      |
| P-7.T-6-0,10                              | 6,0                       | 0,10                 | 34,5      |
| P-7.T-8-0,19                              | 8,0                       | 0,19                 | 34,5      |
| P-7.T-10-0,30                             | 10,0                      | 0,30                 | 44,5      |
| P-7.T-12-0,43                             | 12,0                      | 0,43                 | 44,5      |
| P-7.T-14-0,58                             | 14,0                      | 0,58                 | 44,5      |

# П Условия эксплуатации

- Окружающая среда воздух;
- температура окружающей среды от плюс 5 до плюс 45 С;
- относительная влажность воздуха до 85% при температуре плюс  $25^{\circ}$ C;
- атмосферное давление от 84,0 до 106,6 кПа;
- температура теплоносителя в питающей сети до 150°C;
- перепад давления теплоносителя в сетевом и обратном трубопроводах (0,15-0,3) МПа;
- напряжение питания или напряжение управляющих импульсов от 187 до 242 В частоты (501) Гц.

#### Применение термомайзеров в системе отопления здания

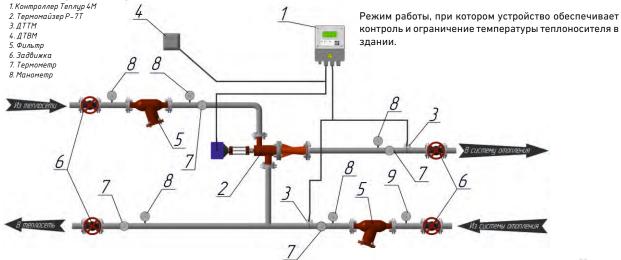



рис. 70. Типовая схема отопления здания.



#### Установка датчиков.

Установку датчиков температуры теплоносителя произвести в стальные гильзы, вваренные в трубопровод под углом, обеспечивающим максимальное обтекание их теплоносителем, на расстояние 1-1,5 м от элеватора. Гильзы должны быть заполнены трансформаторным или индустриальным маслом. Установку датчика температуры наружного воздуха выполнить на наружной стене здания на высоте не менее 3м, таким образом, чтобы солнечные лучи, тепловыделения здания и осадки не попадали на его корпус. От наружной стены здания датчик должен быть расположен на расстоянии не менее 80 мм. Техническая документация на защитный козырёк для датчика температуры поставляется по согласованию с заказчиком.

Установку датчиков температуры воздуха в помещении произвести на внутренних ограждающих конструкциях помещения вдали от отопительных приборов, оконных и дверных проемов и вентиляционных решеток на высоте около

2 м от пола. Рекомендуется устанавливать датчики в представительных помещениях различных этажей или в сборных каналах вентиляционных блоков.

Подключить заземляющие зажимы МЭИ элеватора и устройства управления к контуру заземления гибким медным изолированным проводом сечением не менее 1,5 мм2.

Монтаж линий напряжением 220 В выполнить кабелями (шнурами) с медными жилами сечением 1,0 мм2.

Монтаж линий до датчиков температуры выполнить витыми парами проводов с медными жилами сечением 0,5 - 1,0 мм2. Длина соединительных линий не более 100м.

При прокладке соединительных линий обеспечить их защиту от механических повреждений, попадания воды и других жидкостей.

Допускается прокладка соединительных линий до датчиков температуры совместно с цепями напряжением 220 В, но не рекомендуется.

При подключении датчиков температуры обеспечить правильность подключения проводников к зажимам.

Внешний вид платы датчика температуры представлен на рисунке.



Рис. 72. Плата содержит один разъём: XT1 -для подключения датчика к блоку управления

Температурный датчик.

Таб. 118. Маркировка клемм датчика.

| Nº | Контакт         |   |  |  |
|----|-----------------|---|--|--|
| 1  | Линия данных    |   |  |  |
| 2  | Питание датчика | + |  |  |
| 3  | Питание датчика | - |  |  |

#### Устройство и работа термомайзеров

Термомайзеры выполнены на базе гидравлических осевых элеваторов типа ЭГО (в дальнейшем - элеваторы), управление которыми осуществляется устройствами управления типа "Теплур".

Регулирование температуры теплоносителя в подающем трубопроводе системы отопления осуществляется изменением соотношения потоков теплоносителя, поступающих в элеватор из подающего и обратного трубопроводов, путем регулирования проходного сечения сопла струйного насоса элеватора.

При отклонении текущей температуры теплоносителя в подающем трубопроводе от расчетной, устройство управления подает в электромоторный привод элеватора- механизм электрический исполнительный (МЭИ) - управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя на выходе регулятора.

Расчетная температура теплоносителя в подающем трубопроводе определяется на основании:

- заданного температурного графика системы отопления;
- отклонении (превышении) температуры теплоносителя в обратном трубопроводе;
- отклонении температуры воздуха в помещении от заданной. Информация о значениях контролируемых температур поступает с датчиков температуры.

В регуляторах отопления используется 3 датчика температуры: Отопление здания:

- в подающем трубопроводе системы отопления;
- в обратном трубопроводе;
- наружного воздуха; Отопление комнаты:
- в подающем трубопроводе;
- воздуха в первой точке помещения.
- воздуха во второй точке помещения.

Энергосберегающее оборудование -

#### Устройство и принцип работы элеватора типа ЭГО

В основе работы элеватора лежит принцип инжекции. Сетевая вода, имеющая более высокое давление и температуру, поступает в приемную камеру струйного насоса и через сопло нагнетается в камеру смещения, где смешивается с водой, засасываемой из обратного трубопровода. Через диффузор смешанная вода (теплоноситель) поступает в систему отопления

Регулирование температуры теплоносителя на выходе элеватора осуществляется изменением соотношения между коли-

чеством сетевой воды и воды, поступающей из обратного трубопровода, путем регулирования проходного сечения сопла струйного насоса.

При отклонении текущего значения температуры теплоносителя в подающем трубопроводе от расчетной устройство управления подает в МЭИ элеватора управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя.

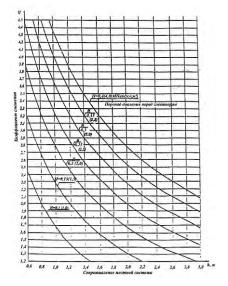



Рис. 73. Диаграмма зависимости напора тепловой сети перед элеватором от коэффициента смещения и сопротивления местной системы.

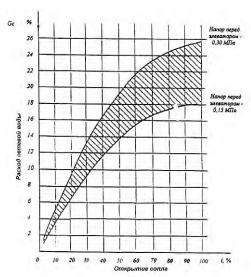



Рис. 74. Диаграмма зависимости количества воды, отбираемой из тепловой сети, от открытия сопла и суммарного потока.

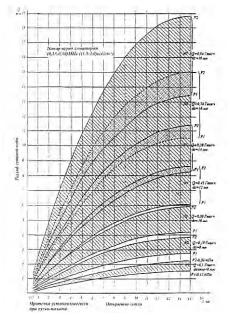



Рис. 75.Диаграмма зависимости количества воды, отбираемой из тепловой сети, от открытия сопла и суммарного потока.



## Технические характеристики

Таб. 119. Технические характеристики термомайзеров Р-7.Т.

| Параметры                                                                                                          | Значение  |
|--------------------------------------------------------------------------------------------------------------------|-----------|
| Максимальная потребляемая электрическая мощность (от сети 220В, 50 Гц) Вт, не более:                               |           |
| - в статическом режиме в момент прохождения управляющих импульсов                                                  | 10        |
| - в момент прохождения управляющих импульсов                                                                       | 55        |
| Температура теплоносителя в питающей сети, °С                                                                      | До 150    |
| Рабочее давление теплоносителя, Мпа, не более                                                                      | 1,6       |
| Перепад давления теплоносителя в сетевом и обратном трубопроводах, МПа                                             | 0,15-0,30 |
| Температура объекта регулирования, °С                                                                              | 10-50     |
| Зона нечувствительности по рассогласованию температуры теплоносителя в подающем теплопроводе системы отопления, °С | 0-10      |

## Габаритные и присоединительные размеры

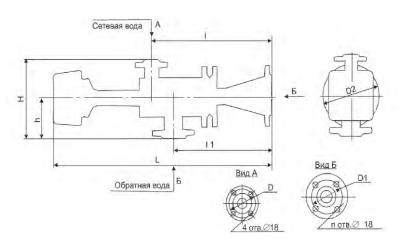



Рис. 76. Габаритные и присоединительные размеры термомайзеров Р-7.Т.

Таб. 120. Габаритные и присоединительные размеры термомайзеров Р-7.Т.

| Обозначение   |                         |      |     |         |         | Размеры | ,мм |         |                |          |          |     |     |     |     |     |     |    |    |  |
|---------------|-------------------------|------|-----|---------|---------|---------|-----|---------|----------------|----------|----------|-----|-----|-----|-----|-----|-----|----|----|--|
| термомайзера  | Исполнение<br>элеватора | 1    | L   | I1      | Н       | h       | D   | D,      | D <sub>2</sub> | dy Вид А | dy Вид Б | n   |     |     |     |     |     |    |    |  |
| P-7.T-4-0,16  | ЭГО.00                  |      |     |         |         |         |     |         |                |          |          |     |     |     |     |     |     |    |    |  |
| P-7.T-6-0,10  | ЭГО.01                  | 950  | 950 | 950     | 950     | 950     | 950 | 950     | 950            | 950      | 410      | 335 | 240 | 110 | 110 | 125 | 160 | 40 | 50 |  |
| P-7.T-8-0,19  | ЭГО.02                  |      |     |         |         |         |     |         |                |          |          | ,   |     |     |     |     |     |    |    |  |
| P-7.T-10-0,30 | ЭГО.03                  |      |     |         |         |         |     |         |                |          |          | 4   |     |     |     |     |     |    |    |  |
| P-7.T-12-0,43 | ЭГО.04                  | 1120 | 580 | 580 490 | 490 285 | 155     | 125 | 125 160 | 160 195 !      | 50       | 80       |     |     |     |     |     |     |    |    |  |
| P-7.T-14-0,58 | ЭГО.05                  |      |     |         |         |         |     |         |                |          |          |     |     |     |     |     |     |    |    |  |







- для автоматического регулирования температуры смешанного потока (горячей воды) в открытых системах горячего водоснабжения путем изменения соотношения потоков теплоносителя, поступающих в термомайзер из подающего и обратного трубопроводов;
- для автоматического изменения температуры горячей воды в необходимое время в соответствии с функциональными возможностями устройства управления;
- Для комплектования оборудования центральных и индивидуальных тепловых пунктов (ЦТП,ИТП).



- 1. Устройство управления типа "ТЕПЛУР", выполненное на базе однокристальной микро ЭВМ.
- 2. Клапан смесительный типа КС.
- 3. Датчик температуры теплоносителя.
- 4. Клапан обратный со стороны подачи обратного теплоносителя в исполнениях клапанов КСО1-КСО6.

Таб. 121. Виды исполнения термомайзеров Р-7.Т

| Обозначение исполнения термомайзера | ДУ сопла<br>элеватора, мм | Т/пр.,<br>Гкал/ч+15% | Масса, кг |
|-------------------------------------|---------------------------|----------------------|-----------|
| P-8.T-25-2,5                        | 25                        | 2,5                  | 18,5      |
| P-8.T-25-4,0                        | 25                        | 4,0                  | 18,5      |
| P-8.T-25-6,0                        | 25                        | 6,0                  | 18,5      |
| P-8.T-50-10,0                       | 50                        | 10,0                 | 25,0      |
| P-8.T-50-16,0                       | 50                        | 16,0                 | 25,0      |
| P-8.T-50-27,0                       | 50                        | 27,0                 | 25,0      |
| P-8.T-80-56,0*                      | 80                        | 56,0                 | 54,5      |
| P-8.T-80-71,0*                      | 80                        | 71,0                 | 54,5      |

\*Спец. заказ

# П Условия эксплуатации

- окружающая среда воздух;
- температура окружающей среды от плюс 5 до плюс 45 С;
- относительная влажность воздуха до 85% при температуре плюс 25°C;
- атмосферное давление от 84,0 до 106,6 кПа;
- температура теплоносителя в питающей сети до150°С;
- перепад давления теплоносителя в сетевом и обратном трубопроводах (0,15-0,3) МПа;
- напряжение питания или напряжение управляющих импульсов от 187 до 242 В частоты (501) Гц.

#### Применение термомайзеров в системе отопления

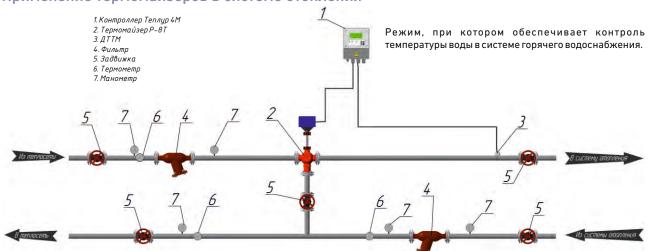



Рис. 77. Типовая схема ГВС.



#### Применение термомайзеров в системах отопления здания

Режим работы, при котором устройство обеспечивает контроль и ограничение температуры теплоносителя в здании.

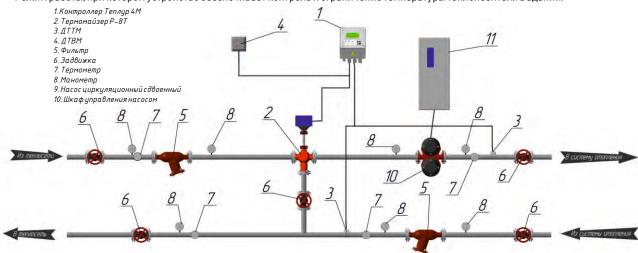



Рис. 78. Типовая схема отопления здания.

#### Применение термомайзеров в системах отопления здания

Режим, при котором устройство обеспечивает контроль температуры воздуха в отдельной комнате, например, где установлено оборудование, требующее для своей работы поддержания постоянной температуры.

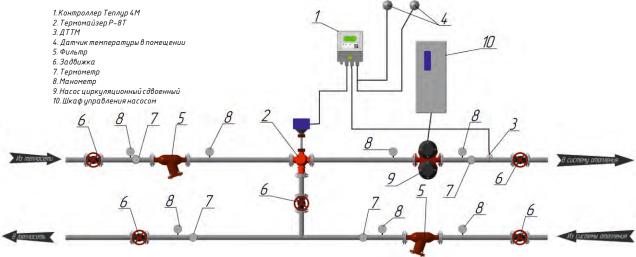



Рис. 79. Типовая схема отопления комнаты.

#### Устройство и работа регулятора

Регуляторы выполнены на базе смесительных трехходовых клапанов типа КС (в дальнейшем - клапаны), управление которыми осуществляется устройствами управления типа "Теплур".

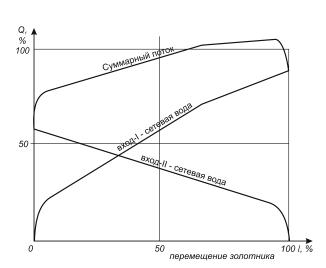
Регулирование температуры горячей воды осуществляется изменением соотношения потоков теплоносителя, поступающих в клапан из подающего и обратного трубопроводов, путем регулирования сечения проточной части клапана.

При отклонении текущей температуры горячей воды от заданной, устройство управления подает в электромоторный привод клапана - механизм электрический исполнительный (МЭИ) - управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя на выходе регулятора.

Информация о значении контролируемой температуры поступает с датчика температуры.

В основе работы клапана лежит принцип смешивания двух потоков среды (например: прямой сетевой воды и обратной воды в открытых системах горячего водоснабжения) с целью поддержания различных параметров суммарного потока (температуры, расхода, давления).

Поскольку давление рабочей среды в боковом входном


патрубке больше давления рабочей среды в нижнем входном патрубке, происходит затягивание рабочей среды из нижнего патрубка. Этому способствует специальная конфигурация окон в золотнике. Суммарный поток рабочей среды соответствует взаимному расположению окон в разделенных перегородкой частях золотника относительно выходного патрубка.

В крайнем верхнем положении золотника рабочая среда проходит в выходной патрубок только из нижнего входного патрубка, в крайнем нижнем - только из бокового входного патрубка.

Регулирование параметров смешанной рабочей среды осуществляется изменением соотношения между проходящими через клапан потоками рабочей среды путем регулирования положений золотника.

При отклонении текущего значения температуры суммарного потока от заданного устройство управления подает в МЭИ клапана управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения заданного параметра суммарного потока.

На рисунке приведены усредненные пропускные характеристики клапанов в зависимости от положения регулирующего органа.



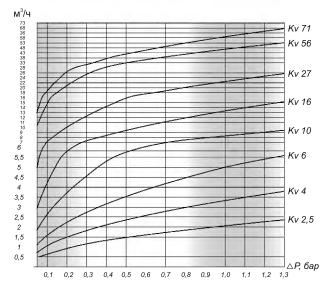



Рис. 80. Расчетные пропускные характеристики клапанов типа КС.

Рис. 91. Зависимость расхода м³/ч от перепада давления на клапане, бар.

#### Технические характеристики

Таб. 122. Технические характеристики термомайзеров Р-8.Т.

| Параметры                                                                               | Значение |  |  |  |
|-----------------------------------------------------------------------------------------|----------|--|--|--|
| Максимальная потребляемая электрическая мощность (от сети 220В, 50 Гц) Вт, не более:    |          |  |  |  |
| - в статическом режиме в момент прохождения управляющих импульсов                       | 10       |  |  |  |
| - в момент прохождения управляющих импульсов                                            | 55       |  |  |  |
| Температура теплоносителя в питающей сети, °С                                           |          |  |  |  |
| Рабочее давление теплоносителя, Мпа, не более                                           | 1,0      |  |  |  |
| Перепад давления теплоносителя между входными патрубками, Мпа, не более МПа             | 0,2      |  |  |  |
| Перепад давления теплоносителя между входными и выходными патрубками, Мпа, не более МПа | 0,6      |  |  |  |
| Температура объекта регулирования (горячей воды), °С                                    | 10-90    |  |  |  |

#### Габаритные и присоединительные размеры

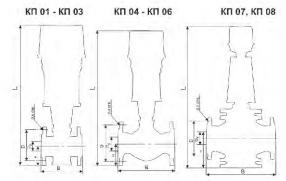



Рис. 82. Габаритные и присоединительные размеры термомайзеров Р-8.Т.

Таб. 123. Габаритные и присоединительные размеры термомайзеров Р-8.Т.

| Обозначение   | Исполнение | Размеры, мм |     |     |     | _  |    |     |   |
|---------------|------------|-------------|-----|-----|-----|----|----|-----|---|
| термомайзера  |            | В           | Н   |     | D   | Dy |    | - n |   |
| P-8.T-25-2,5  | KC 01      | 120         |     |     |     |    |    |     |   |
| P-8.T-25-4,0  | KC 02      |             | 120 | 115 | 486 | 85 | 25 | 14  | 4 |
| P-8.T-25-6,0  | KC 03      |             |     |     |     |    |    |     |   |
| P-8.T-50-10,0 | KC 04      |             |     |     |     |    |    |     |   |
| P-8.T-50-16,0 | KC 05      | 200         | 150 | 562 | 125 | 50 | 18 | 4   |   |
| P-8.T-50-27,0 | KC 06      |             |     |     |     |    |    |     |   |
| P-8.T-80-56,0 | KC 07      | 306         | 197 | 723 | 160 | 80 | 18 | 4   |   |
| P-8.T-80-71,0 | KC 08      | 300         | 177 | 723 | 100 | 00 | 10 | 4   |   |





- Для автоматического регулирования температур вторичного теплоносителя (горячей воды) в закрытых системах горячего водоснабжения путем изменения расхода первичного теплоносителя:
- для автоматического изменения температуры горячей воды в необходимое время в соответствии с функциональными возможностями устройства управления;
- для комплектования оборудования центральных и индивидуальных тепловых пунктов (ЦТП, ИТП);
- для применения в системах отопления с насосным смешением, в системах вентиляции и кондиционирования воздуха и др. технологических установках.

# 🥸 Принцип действия

Прибор предназначен для использования совместно с датчиками температуры TMP03/TMP04 (Analog Devices®). Использование датчиков с цифровой формой выходного сигнала позволяет их устанавливать на большом удалении от прибора (до нескольких сотен метров) без применения специальных мер и средств. Другим достоинством данных датчиков является широкий диапазон измеряемых температур -40...150°C, обеспечивая погрешность не более ±1.5°C в диапазоне температур -25°C...+100°C. На основании показаний датчиков температуры, прибор изменяет количество поданного прямого теплоносителя либо соотношение прямого и обратного теплоносителя, управляя приводом трубопроводной арматуры (например, термомайзером P-2.T).

# ( Режим отопления здания

Режим погодозависимого регулирования, когда температура подачи поддерживается по заранее установленному графику зависимости от наружной (уличной) температуры. При выходе температуры обратного теплоносителя за рамки установленного диапазона (Тобр.min, Тобр.max) вступает в работу алгоритм аварийной ситуации, при котором инициируется открытие трубопроводной арматуры соответствующего контура и включается реле «помпа/насос». Данное реле может использоваться для включения циркуляционного насоса, ускоряющего прогрев системы, или для сигнализации об аварийной ситуации.

Таб. 124. Диапазон регулируемых параметров.

| Параметры<br>режима | Описание                                                       | Min  | Max   |
|---------------------|----------------------------------------------------------------|------|-------|
| Тпод.min            | Минимальная температура теплоносителя в подающем трубопроводе  | 20.0 | 180.0 |
| Тпод.тах            | Максимальная температура теплоносителя в подающем трубопроводе | 20.0 | 180.0 |
| Тнар.min            | Минимальная температура наружного воздуха                      |      | 50.0  |
| Tнар. max           | Максимальная температура наружного воздуха                     |      | 50.0  |
| Зона нч.            | Зона нечувствительности                                        |      | 10.0  |
| Тобр.min            | Минимальная температура обратного теплоносителя                |      | 150.0 |
| Тобр.тах            | Максимальная температура обратного теплоносителя               | 20.0 | 150.0 |

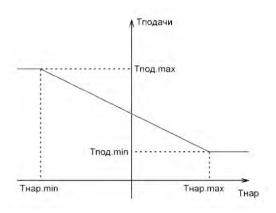



Рис. 83. Температурный график.

#### Режим ГВС (горячее водоснабжение)

Таб. 125. Режим поддержания температуры подачи на заданном уровне.

| Параметры<br>режима | Описание                                | Min   | Max   |
|---------------------|-----------------------------------------|-------|-------|
| Тводы               | Уставка температуры подачи горячей воды | 10,00 | 90,00 |
| Зона нч.            | Зона нечувствительности                 | 0,0   | 10,00 |

#### Режим отопления комнаты.

режим поддержания температуры в помещении. Алгоритм требует подключения 3-х датчиков температуры, поэтому реализация возможна только на первом контуре регулирования, при этом второй контур допустимо использовать только в режиме ГВС.

Параметры режимов настраиваются через меню прибора или с помощью программного обеспечения. Доступ к управлению настройкам прибора и доступен только после ввода пароля доступа.

Использование функции «расписание» в приборе позволяет существенно экономить теплоноситель в периоды, когда помещение не используется (например, в ночное время или выходные дни). Всего может быть установлено до 7 таймеров: 1 на каждый день недели. Функция расписание настраивается отдельно для каждого канала

#### Условия эксплуатации

Прибор выполнен в пыле- влагозащищенном корпусе класса защиты: IP 65 (ГОСТ Р 50827-95, EN 60529). Подключение к контроллеру производится через безвинтовые клеммы одножильным или многожильным проводом сечением:

- 0.2-0,5 мм2 для разъема порта RS-232
- 1.5 мм2 для остальных разъемов

Применение многожильного провода, допустимо после облуживания зачищенных концов, либо с использованием наконечников для опрессовки с длиной гильзы от 10мм (например, НШВИ 1.0-12).

- Конфигурация контроллера осуществляется посредством ввода параметров настройки через меню прибора или с помощью подключенного компьютера специальным программным обеспечением по интерфейсу RS-232 или USB.
- Эксплуатация контроллера допускается после проверки подключения, настройки и проведения пусконаладочных работ.

#### Технические характеристики

Таб. 126. Технические характеристики устройства Теплур 4М.

| Параметры                                                                | Значение                                                   |
|--------------------------------------------------------------------------|------------------------------------------------------------|
| Диапазон питающих напряжений переменного тока                            | 85264 B                                                    |
| Диапазон частот переменного тока                                         | 47-440 Гц                                                  |
| Максимальная пиковая потребляемая мощность, не более                     | 8 Вт                                                       |
| Среднеквадратичная потребляемая мощность, не более                       | 2 Вт                                                       |
| Напряжение пробоя изоляции, не менее                                     | 1000 B                                                     |
| Диапазон температур эксплуатации                                         | -40+60°C                                                   |
| Максимальная длина шлейфа для подключения датчиков температуры, не менее | 100 м                                                      |
| Скорость передачи данных по интерфейсу RS-232                            | 1200, 2400, 4800, 9600, 19200,<br>38400, 57600, 115200 бод |

#### Подключение

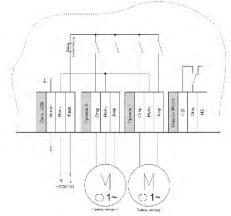
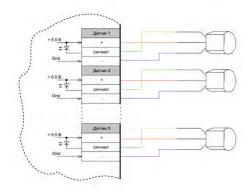




Рис. 84. Схема поключения.

Для удобства пользователя на схемах подключения приведены внутренние входные/выходные цепи прибора. При подключении рекомендуется придерживаться цветовой схемы проводов изображенной схемах подключения.

Возможно подключение приводов трубопроводной арматуры с напряжением управления равным сетевому напряжению питания ~220/110 В. При подключении приводов сторонних производителей необходимо учитывать их ток потребления и, при необходимости увеличить номинал установленного предохранителя (вставка плавкая), с учетом тока потребления приводов. Максимальный ток потребления привода (или другого исполнительного механизма) не должен превышать 6 Ампер. Реле помпа/насос допускает непосредственное коммутирование питания двигателя насоса с номинальным напряжением ~220 Вольт и током потребления до 6 Ампер. Допускается максимальный ток контактов всех встроенных реле до 16 Ампер включительно. Схема подключения на рисунке слева.





#### TMP03/TMP04

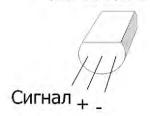



Рис. 85. Схема поключения датчиков.

К прибору могут подключаться до 5 датчиков температуры, назначения которых меняются в зависимости от выбранного алгоритма работы.

Клеммы подключения датчиков и интерфейса связи RS232 изолированы от основной схемы устройства и имеют между собой общую отрицательную шину питания (контакт «-»). Подключение датчиков и расположение и назначение выводов датчика изображено на рисунке.

Устройство снабжено энергонезависимой памятью для хранения журнала событий (180 записей) и архива данных температур за период 168 суток (8064 записей). Запись журнала событий и архива данных производится циклично, старые данные затираются более новыми. События сохраняются при возникновении, данные записываются с периодичностью 30 минут. Для считывание и просмотра записей можно использовать программное обеспечение — "TeplurNavigator". А так же, прибор может быть подключен и использоваться совместно с диспетчерскими системами и системами удаленного мониторинга (например, АИС "Теплоснабжение"). Подключение прибора к системам необходимо производить по интерфейсу RS-232 или с помощью опционально встроенного модема. Протокол обмена: ModBus PTII®

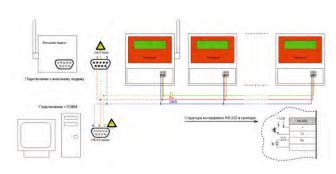


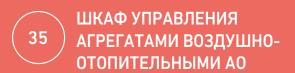

Рис. 86. Схема подключения.

Особенности протокола не рассматриваются в настоящем руководстве по эксплуатации. Возможно параллельное включение нескольких приборов совместно с тепловычислителями в одну сеть, приборы в сети должны быть настроены на одну скорость обмена данными и иметь разные адреса. Так же необходимо учитывать, что ведущее устройство в сети может быть только одно. Не допускается подключение нескольких внешних устройств одновременно. Если на одном из приборов «Теплур-4 м» используется встроенный модем, то допустимо подключать одно внешнее ведущее устройство, например ПЭВМ для конфигурации. При этом необходимо понимать, что одновременная работа двух ведущих устройств в системе может приводить к искажению данных. На большой протяженности линий связи, и при более 4-х параллельно включенных устройствах работоспособность не гарантируется. Для этих целей необходимо использовать конвертеры RS232-RS485, для питания подключенного к прибору конвертера допускается использовать клеммы «-» и «+» разъема RS232, напряжение на клеммах не стабилизированное 12 Вольт, при токе нагрузки до 70 мА.

#### Расчет эффективности использования термомайзеров в производственных и административных зданиях.

Длительность отопительного сезона в Центральном регионе России составляет 220 дней или 24x220=5280 час.

Число рабочих дней в отопительном сезоне: (220/7)x5=157 дней или 157x9=1413 час.


Число нерабочих дней (220/7)х2=63 дня

Общее число нерабочих часов 157х15+63х24=3867 часов. Удельный расход тепла за 1 час отопительного сезона q=Q/5280,rfle Q-общий расход тепла за отопительный сезон. Применяя термомайзеры для поддержания температуры в нерабочее время на уровне 50% оттемпературы в рабочее время и считая зависимость температуры от расхода тепла линейной, за отопительный сезон расход тепла составит: Q=(Q/5280)x1413+0,5x(Q/5280)x3867=0,63Q, т. е. при 5-ти дневной рабочей неделе в одну смену применение термомайзеров дает экономию тепла приблизительно 35%.

Теплопроизводительность термомайзеров 0,1....0,97 Гкал/час. Пропускная способность за сезон: (0,1...0,97)x5280=528...5120 Гкал.

Экономия тепла за сезон при применении термомайзеров: (528...5120)x0,35%=185...1790Гкал.





# 🥸 Принцип работы

Шкаф обеспечивает управление агрегатами воздушноотопительнымиАО в ручном режиме. Защита от токов К.З. и перегрузки цепей управления обеспечивается с помощью автоматического выключателя. Защита электродвигателя вентилятора от перегрузок обеспечивается электротепловым реле.

В шкафах предусмотрена необходимая световая сигнализация: СЕТЬ, АВАРИЯ, ВКЛ. ВЕНТИЛЯТОРА.

Включение шкафа осуществляется в следующем порядке:

- 1. Включить автоматические выключатели;
- 2. включить кнопку управления вентилятором.

При срабатывании защиты от перегрева электродвигателя загорается светосигнальная арматура АВАРИЯ, при этом вентилятор отключается.

В этом случае, в обязательном порядке, необходимо отключить блок от питающей сети, выяснить и устранить причину аварийного срабатывания защиты, после чего блок можно включить в работу.

Конструктивно шкаф выполнен в виде комплектного устройства управления ящичного типа.

Ввод и вывод силовых цепей и цепей управления осуществляется через сальники в нижней стенке шкафа.

На дверце шкафа размещены кнопки управления, арматура светосигнальная. Выведена рукоятка управления автоматическоговыключателя

Внутри шкафа, на монтажной панели, установлены автоматический выключатель (выключатели), электротепловое реле, электромагнитное реле и т.д.

# **✓** Назначение

Шкаф предназначен для управления агрегатами воздушноотопительными и защиты их от различных аварийных ситуаций.

# 🗰 Условия эксплуатации

Шкаф должен эксплуатироваться в закрытых помещениях при следующих условиях: климатическое исполнение — У; категория размещения - 3 при температуре окружающего воздуха от -40°C до +35°C; высота над уровнем моря — до 2000м; воздействие внешних механических факторов по группе М1 ГОСТ 17516.1-90; режим работы — продолжительный; срок службы — 8 лет; степень защиты IP31.

#### Технические характеристики

Таб. 127. Основные технические данные.

| Показатель                                 | Значение |
|--------------------------------------------|----------|
| Напряжение главной цепи, В                 | 380±5%   |
| Номинальное напряжение цепей управления, В | 220      |
| Номинальная частота, Гц                    | 50       |

#### Габаритные размеры

Таб. 128. Габаритные размеры.

| Блок управления | Размеры, мм |     |     |  |  |
|-----------------|-------------|-----|-----|--|--|
| Disk j. pabre   | L           | Н   | В   |  |  |
| ШУАО 2-3        | 295         | 375 | 160 |  |  |
| ШУ АО 2-4       | 295         | 375 | 160 |  |  |
| ШУ АО 2-6,3     | 295         | 375 | 160 |  |  |
| ШУ АО 2-10      | 295         | 375 | 160 |  |  |
| ШУ АО 2-20      | 295         | 375 | 160 |  |  |
| ШУ АО 2-25      | 295         | 375 | 160 |  |  |
| ШУ АО 2-50      | 295         | 375 | 160 |  |  |





# **√** Назначение

Блоки предназначены для управления установками воздухонагревательными и защиты их от различных аварийных ситуаций.

# П Условия эксплуатации

Блоки должны эксплуатироваться в закрытых помещениях при следующих условиях: климатическое исполнение — У; категория размещения - 3 при температуре окружающего воздуха от -40°C до +35°C; высота над уровнем моря — до 2000м; воздействие внешних механических факторов по группе М1 ГОСТ 17516.1-90; режим работы — продолжительный; срок службы — 8 лет; степень защиты IP30.

# БЛОК УПРАВЛЕНИЯ ВОЗДУХОНАГРЕВАТЕЛЬНЫМИ УСТАНОВКАМИ ТИПА ВНУ

# 🥸 Принцип работы

Блок обеспечивает управление вентилятором воздухонагревательной установки ВНУ в ручном режиме. Защита от токов К.З. и перегрузки цепей управления обеспечивается с помощью автоматического выключателя. Защита электродвигателя вентилятора от перегрузок обеспечивается электротепловым реле.

В блоке предусмотрена необходимая световая сигнализация: СЕТЬ, АВАРИЯ, ВКЛ. ВЕНТИЛЯТОРА.

Включение шкафа осуществляется в следующем порядке:

- 1. Включить автоматические выключатели;
- 2. включить кнопку управления вентилятором.

При срабатывании защиты от перегрева электродвигателя загорается светосигнальная арматура АВАРИЯ, при этом вентилятор отключается.

В этом случае, в обязательном порядке, необходимо отключить блок от питающей сети, выяснить и устранить причину аварийного срабатывания защиты, после чего блок можно включить в работу.

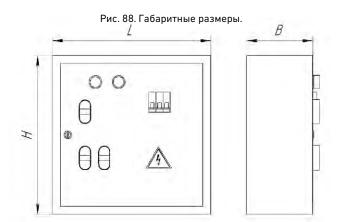
Конструктивно блок выполнен в виде комплектного устройства управления ящичного типа.

Ввод и вывод силовых цепей и цепей управления осуществляется через сальники в нижней стенке блока.

На дверце блока размещены кнопки управления, арматура светосигнальная. Выведена рукоятка управления автоматического выключателя

Внутри блока, на монтажной панели, установлены автоматический выключатель (выключатели), электротепловое реле, электромагнитное реле и т.д.

#### Технические характеристики


Таб. 129. Основные технические данные.

| Показатель                                    | Значение |
|-----------------------------------------------|----------|
| Напряжение главной цепи, В                    | 380±5%   |
| Номинальное напряжение<br>цепей управления, В | 220      |
| Номинальная частота, Гц                       | 50       |

Таб. 130. Технические характеристики блока.

| Блок управления | Тип управляемой установки |                                     |                                                                               |  |  |  |
|-----------------|---------------------------|-------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| Тип             | Применяемость             | Производительность<br>по теплу, кВт | Номинальная мощность<br>и частота вращения электро-<br>двигателя, кВт/об./мин |  |  |  |
|                 | ВНУ-40-01                 | 52,3                                |                                                                               |  |  |  |
|                 | ВНУ-50-01                 | 59,9                                |                                                                               |  |  |  |
| БУ ВНУ - 01     | ВНУ-55-01                 | 57,7                                | 1,1 / 1500                                                                    |  |  |  |
|                 | ВНУ-65-01                 | 65,1                                |                                                                               |  |  |  |
| БУ ВНУ - 02     | ВНУ-70-01                 | 78,8                                | 2.2 / 1500                                                                    |  |  |  |
|                 | ВНУ-90-01                 | 89,1                                | 2,271000                                                                      |  |  |  |

#### Габаритные размеры



Таб. 131. Габаритные размеры.

| Блок управления | Размеры, мм |     |     |
|-----------------|-------------|-----|-----|
|                 | L           |     |     |
| БУ ВНУ - 01     | 295         | 375 | 160 |
| БУ ВНУ - 02     | 295         | 375 | 160 |

Автоматика — 123





Шкафы предназначены для управления воздухонагревательными электрическими установкамии защиты их от различных аварийных ситуаций.

# П Условия эксплуатации

Шкаф должен эксплуатироваться в закрытых помещениях при следующих условиях: климатическое исполнение — У; категория размещения - 3 при температуре окружающего воздуха от -40°C до +35°C; высота над уровнем моря — до 2000м; воздействие внешних механических факторов по группе М1 ГОСТ 17516.1-90; режим работы — продолжительный; срок службы — 8 лет; степень защиты IP31.

# 🥸 Принцип работы

Шкаф обеспечивает управление агрегатами в ручном режиме. Защита от токов К.З. и перегрузки цепей управления обеспечивается с помощью автоматического выключателя. Защита электродвигателя вентилятора от перегрузок обеспечивается электротепловым реле.

В шкафах предусмотрена необходимая световая сигнализация: СЕТЬ, АВАРИЯ, ВКЛ. ВЕНТИЛЯТОРА.

Включение шкафа осуществляется в следующем порядке:

- 1. Включить автоматические выключатели;
- 2. включить кнопку управления вентилятором.

При срабатывании защиты от перегрева электродвигателя загорается светосигнальная арматура АВАРИЯ, при этом вентилятор отключается.

В этом случае, в обязательном порядке, необходимо отключить блок от питающей сети, выяснить и устранить причину аварийного срабатывания защиты, после чего блок можно включить в работу.

Конструктивно шкаф выполнен в виде комплектного устройства управления ящичного типа.

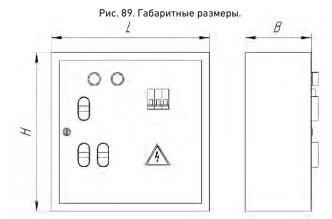
Ввод и вывод силовых цепей и цепей управления осуществляется через сальники в нижней стенке шкафа.

На дверце шкафа размещены кнопки управления, арматура светосигнальная. Выведена рукоятка управления автоматического выключателя

Внутри шкафа, на монтажной панели, установлены автоматический выключатель (выключатели), электротепловое реле, электромагнитное реле и т.д.

#### Технические характеристики

Таб. 132. Основные технические данные.


| Показатель                                 | Значение |
|--------------------------------------------|----------|
| Напряжение главной цепи, В                 | 380±5%   |
| Номинальное напряжение цепей управления, В | 220      |
| Номинальная частота, Гц                    | 50       |

Таб. 133. Технические характеристики.

| Шкаф управления |                       | Тип управляемой установки             |                                                 |                                               |                                        |
|-----------------|-----------------------|---------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|
| Тип             | Номинальный ток,<br>А | Установленная мощность установки, кВт | Номинальная мощность<br>воздухонагревателя, кВт | Номинальная мощность<br>электродвигателя, кВт | Мощность нагревательных<br>секций, кВт |
| ШУВЭ-15         | 25                    | 15,9                                  | 14,4                                            | 1,1 (1,5)                                     | 1/3 Рн                                 |
| ШУВЭ-30         | 50                    | 24,0                                  | 22,5                                            | 1,1 (1,5)                                     | 1/3 Рн                                 |
| шуво ос         | E753 30               | 30,3                                  | 28,8                                            | 1,1 (1,5)                                     | 1/3 Рн                                 |
| HIVD2 /F        | 80                    | 47,2                                  | 45,0                                            | 2,2                                           | 1/3 Рн                                 |
| ШУВЭ-45         | ШУВЭ-45 80            | 45,4                                  | 43,2                                            | 2,2                                           | 1/3 Рн                                 |
| 111VD2 / F      | 111/00 /5             | 71,5                                  | 67,5                                            | 40                                            | 1/3 Рн                                 |
| ШУВЭ-65 125     | 61,6                  | 57,6                                  | 40                                              | 1/3 Рн                                        |                                        |
| ШУВЭ-90         | 180                   | 97,5                                  | 90                                              | 7,5                                           | 1/3 Рн                                 |



# Габаритные размеры



Таб. 134. Габаритные размеры.

| Блок управления | Размеры, мм |        |     |
|-----------------|-------------|--------|-----|
|                 | L           | Н      | В   |
| ШУВЭ-15-02      |             | 400    | 200 |
| ШУВЭ-30-01      |             |        |     |
| ШУВЭ-30-02      | 400         |        |     |
| ШУВЭ-45-01      |             |        |     |
| ШУВЭ-45-02      |             |        |     |
| ШУВЭ-65-01      | 500         | 650 2: |     |
| ШУВЭ-65-02      |             |        | 220 |
| ШУВЭ-90-01      |             |        |     |

Автоматика — 125



# **√** Назначение

Блоки предназначены для управления электрокалориферными установками и защиты их от различных аварийных ситуаций.

# 🗰 Условия эксплуатации

Блоки должны эксплуатироваться в закрытых помещениях при следующих условиях: климатическое исполнение — У; категория размещения - 3 при температуре окружающего воздуха от -40°С до +35°С; высота над уровнем моря — до 2000м; воздействие внешних механических факторов по группе М1 ГОСТ 17516.1-90; режим работы — продолжительный; срок службы — 8 лет; степень защиты IP30.

# 🔅 Принцип работы

БУ обеспечивает управление ЭКОЦ в ручном режиме на 2-х,3-х, 4-х, 5-и ступенях мощности (в зависимости от типоразмера) нагревательных элементов соответственно 1/2, 1/3 1/4 или 1/5 Рн каждая. Выбор соответствующей ступени мощности осуществляется кнопками управления.

БУ-К обеспечивает подготовку подаваемого в помещение наружного воздуха. Основой является управляющий контроллер ТРМ-1, который обеспечивает поддержание заданной температуры. Схема электрическая принципиальная приведена на рисунках 91, 92.

Работа нагревательных элементов ЭКОЦ сблокирована с вентилятором.

Для защиты нагревательных элементов от перегрева используются термовыключатели, установленные в непосредственной близости от них.

Защита от токов К.З. обеспечивается с помощью автоматического выключателя, цепи управления — отдельным автоматическим выключателем. Защита электродвигателя вентилятора от перегрузок обеспечивается электротепловым реле.

В блоке предусмотрена необходимая световая сигнализация: СЕТЬ, ПЕРЕГРЕВ, ВКЛ. ВЕНТИЛЯТОРА, ВЫБОР МОЩНОСТИ.

Включение шкафа осуществляется в следующем порядке:

- 1. Включить автоматические выключатели;
- 2. включить кнопку управления вентилятором;
- 3. кнопками управления включить необходимую мощность нагревательных элементов.

При срабатывании защиты от перегрева (размыкание контакта термовыключателя отключаются все секции нагревательных элементов загорается светосигнальная арматура ПЕРЕГРЕВ, при этом вентилятор продолжает работать.

В этом случае, в обязательном порядке, необходимо отключить блок от питающей сети, выяснить и устранить причину аварийного срабатывания защиты, после чего блок можно включить в работу.

Конструктивно блок выполнен в виде комплектного устройства управления ящичного типа.

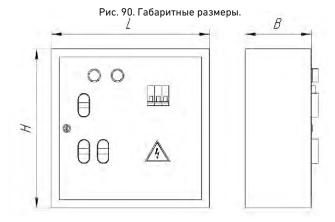
Ввод и вывод силовых цепей и цепей управления осуществляется через сальники в нижней стенке блока.

Термовыключатель аварийного перегрева, установленный вне блока, подключается к блоку зажимов.

На дверце блока размещены кнопки управления, арматура светосигнальная и рукоятка автоматического выключателя.

#### Технические характеристики

Таб. 135. Основные технические данные.


| Показатель                                    | Значение |  |
|-----------------------------------------------|----------|--|
| Напряжение главной цепи, В                    | 380±5%   |  |
| Номинальное напряжение<br>цепей управления, В | 220      |  |
| Номинальная частота, Гц                       | 50       |  |

Таб. 136. Технические характеристики.

| Блок управления | Тип управляемой установки                |                                            |                                     |                                          |
|-----------------|------------------------------------------|--------------------------------------------|-------------------------------------|------------------------------------------|
| Тип             | Установлен. мощ-<br>ность установки, кВт | Ном. мощность воз-<br>духонагревателя, кВт | Ном. мощность электродвигателя, кВт | Мощность нагрева-<br>тельных секций, кВт |
| БУ 1.5          | 5                                        | 4,8                                        | 0,12                                | Рн                                       |
| БУ 2∙10         | 10                                       | 9,6                                        | 0,37                                | 1⁄2 Рн                                   |
| БУ 2∙16         | 15,5                                     | 15                                         | 0,55                                | 1⁄2 Рн                                   |
| БУ 3-25         | 23,6                                     | 22,5                                       | 1,1                                 | 1/3 Рн                                   |
| БУ 3∙40         | 46,5                                     | 45,0                                       | 1,5                                 | 1/3 Рн                                   |
| БУ 3-60         | 69,7                                     | 67,5                                       | 2,2                                 | 1/3 Рн                                   |
| БУ 3-100        | 95,5                                     | 90                                         | 5,5                                 | 1/3 Рн                                   |
| БУ 3-160        | 165                                      | 157,5                                      | 7,5                                 | 1/3 Рн                                   |
| БУ 4-250        | 257,5                                    | 250                                        | 7,5                                 | 1/4 Рн                                   |
| БУ 5∙320        | 323,5                                    | 312,5                                      | 11                                  | 1/5 Рн                                   |



#### Габаритные размеры



Таб. 137. Габаритные размеры.

| Блок управления | Размеры, мм |      |     |
|-----------------|-------------|------|-----|
|                 | L           | н    | В   |
| БУ 1-5          |             | 400  |     |
| БУ 2-10         | 400         |      |     |
| БУ 2-16         |             |      | 200 |
| БУ 3-25         |             |      |     |
| БУ 3-40         |             |      |     |
| БУ 3-60         | 500         | 650  | 220 |
| БУ 3-100        | 500         | 650  | 220 |
| БУ 3-160        | 650         | 800  | 250 |
| БУ 4-250        | 650         | 1000 | 300 |
| БУ 5-320        | 750         | 1200 | 300 |

Рис. 91. Схема электрическая принципиальная БУ 3-160К.



A1\* – устройство устанавливается вне шкафов управления электрокалориферами

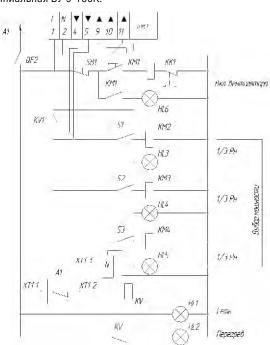
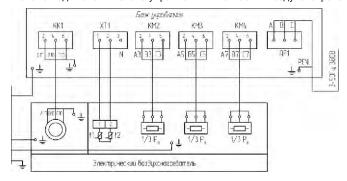




Рис. 92. Схема подключения блока управления БУ 3-160К к воздухонагревателю.

